Deep reinforcement learning library built on top of Neural Network Libraries

Overview

License Build status

Deep Reinforcement Learning Library built on top of Neural Network Libraries

NNablaRL is a deep reinforcement learning library built on top of Neural Network Libraries that is intended to be used for research, development and production.

Installation

Installing NNablaRL is easy!

$ pip install nnabla-rl

NNablaRL only supports Python version >= 3.6 and NNabla version >= 1.17.

Enabling GPU accelaration (Optional)

NNablaRL algorithms run on CPU by default. To run the algorithm on GPU, first install nnabla-ext-cuda as follows. (Replace [cuda-version] depending on the CUDA version installed on your machine.)

$ pip install nnabla-ext-cuda[cuda-version]
# Example installation. Supposing CUDA 11.0 is installed on your machine.
$ pip install nnabla-ext-cuda110

After installing nnabla-ext-cuda, set the gpu id to run the algorithm on through algorithm's configuration.

import nnabla_rl.algorithms as A

config = A.DQNConfig(gpu_id=0) # Use gpu 0. If negative, will run on CPU.
dqn = A.DQN(env, config=config)
...

Features

Friendly API

NNablaRL has friendly Python APIs which enables to start training with only 3 lines of python code.

import nnabla_rl
import nnabla_rl.algorithms as A
from nnabla_rl.utils.reproductions import build_atari_env

env = build_atari_env("BreakoutNoFrameskip-v4") # 1
dqn = A.DQN(env)  # 2
dqn.train(env)  # 3

To get more details about NNablaRL, see documentation and examples.

Many builtin algorithms

Most of famous/SOTA deep reinforcement learning algorithms, such as DQN, SAC, BCQ, GAIL, etc., are implemented in NNablaRL. Implemented algorithms are carefully tested and evaluated. You can easily start training your agent using these verified implementations.

For the list of implemented algorithms see here.

You can also find the reproduction and evaluation results of each algorithm here.
Note that you may not get completely the same results when running the reproduction code on your computer. The result may slightly change depending on your machine, nnabla/nnabla-rl's package version, etc.

Seemless switching of online and offline training

In reinforcement learning, there are two main training procedures, online and offline, to train the agent. Online training is a training procedure that executes both data collection and network update alternately. Conversely, offline training is a training procedure that updates the network using only existing data. With NNablaRL, you can switch these two training procedures seemlessly. For example, as shown below, you can easily train a robot's controller online using simulated environment and finetune it offline with real robot dataset.

import nnabla_rl
import nnabla_rl.algorithms as A

simulator = get_simulator() # This is just an example. Assuming that simulator exists
dqn = A.DQN(simulator)
# train online for 1M iterations
dqn.train_online(simulator, total_iterations=1000000)

real_data = get_real_robot_data() # This is also an example. Assuming that you have real robot data
# fine tune the agent offline for 10k iterations using real data
dqn.train_offline(real_data, total_iterations=10000)

Getting started

Try below interactive demos to get started.
You can run it directly on Colab from the links in the table below.

Title Notebook Target RL task
Simple reinforcement learning training to get started Open In Colab Pendulum
Learn how to use training algorithms Open In Colab Pendulum
Learn how to use customized network model for training Open In Colab Mountain car
Learn how to use different network solver for training Open In Colab Pendulum
Learn how to use different replay buffer for training Open In Colab Pendulum
Learn how to use your own environment for training Open In Colab Customized environment
Atari game training example Open In Colab Atari games

Documentation

Full documentation is here.

Contribution guide

Any kind of contribution to NNablaRL is welcome! See the contribution guide for details.

License

NNablaRL is provided under the Apache License Version 2.0 license.

Comments
  • Update cem function interface

    Update cem function interface

    Updated interface of cross entropy function methods. The args, pop_size is now changed to sample_size. In addition, the given objective function to CEM function will be called with variable x which has (batch_size, sample_size, x_dim). This is different from previous interface. If you want to know the details, please see the function docs.

    opened by sbsekiguchi 1
  • Add implementation for RNN support and DRQN algorithm

    Add implementation for RNN support and DRQN algorithm

    Add RNN model support and DRQN algorithm.

    Following trainers will support RNN-model.

    • Q value-based trainers
    • Deterministic gradient and Soft policy trainers

    Other trainers can support RNN models in future but is not implemented in the initial release.

    See this paper for the details of the DRQN algorithm.

    opened by ishihara-y 1
  • Implement SACD

    Implement SACD

    This PR implements SAC-D algorithm. https://arxiv.org/abs/2206.13901

    These changes have been made:

    • New environments with factored reward functions have been added
      • FactoredLunarLanderContinuousV2NNablaRL-v1
      • FactoredAntV4NNablaRL-v1
      • FactoredHopperV4NNablaRL-v1
      • FactoredHalfCheetahV4NNablaRL-v1
      • FactoredWalker2dV4NNablaRL-v1
      • FactoredHumanoidV4NNablaRL-v1
    • SACD algorithms has been added
    • SoftQDTrainer has been added
    • _InfluenceMetricsEvaluator has been added
    • reproduction script has been added (not benchmarked yet)

    visualizing influence metrics

    import gym
    
    import numpy as np
    import matplotlib.pyplot as plt
    
    import nnabla_rl.algorithms as A
    import nnabla_rl.hooks as H
    import nnabla_rl.writers as W
    from nnabla_rl.utils.evaluator import EpisodicEvaluator
    
    env = gym.make("FactoredLunarLanderContinuousV2NNablaRL-v1")
    eval_env = gym.make("FactoredLunarLanderContinuousV2NNablaRL-v1")
    
    evaluation_hook = H.EvaluationHook(
        eval_env,
        EpisodicEvaluator(run_per_evaluation=10),
        timing=5000,
        writer=W.FileWriter(outdir="logdir", file_prefix='evaluation_result'),
    )
    iteration_num_hook = H.IterationNumHook(timing=100)
    
    config = A.SACDConfig(gpu_id=0, reward_dimension=9)
    sacd = A.SACD(env, config=config)
    sacd.set_hooks([iteration_num_hook, evaluation_hook])
    sacd.train_online(env, total_iterations=100000)
    
    influence_history = []
    
    state = env.reset()
    while True:
        action = sacd.compute_eval_action(state)
        influence = sacd.compute_influence_metrics(state, action)
        influence_history.append(influence)
        state, _, done, _ = env.step(action)
        if done:
            break
    
    influence_history = np.array(influence_history)
    for i, label in enumerate(["position", "velocity", "angle", "left_leg", "right_leg", "main_eingine", "side_engine", "failure", "success"]):
        plt.plot(influence_history[:, i], label=label)
    plt.xlabel("step")
    plt.ylabel("influence metrics")
    plt.legend()
    plt.show()
    

    image

    sample animation

    sample

    opened by ishihara-y 0
  • Add gmm and Update gaussian

    Add gmm and Update gaussian

    Added gmm and gaussian of the numpy models. In addition, updated the gaussian distribution's API.

    The API change is like following:

    Previous :

    batch_size = 10
    output_dim = 10
    input_shape = (batch_size, output_dim)
    mean = np.zeros(shape=input_shape)
    sigma = np.ones(shape=input_shape) * 5.
    ln_var = np.log(sigma) * 2.
    distribution = D.Gaussian(mean, ln_var)
    # return nn.Variable
    assert isinstance(distribution.sample(), nn.Variable)
    

    Updated:

    batch_size = 10
    output_dim = 10
    input_shape = (batch_size, output_dim)
    mean = np.zeros(shape=input_shape)
    sigma = np.ones(shape=input_shape) * 5.
    ln_var = np.log(sigma) * 2.
    # You have to pass the nn.Variable if you want to get nn.Variable as all class method's return.
    distribution = D.Gaussian(nn.Variable.from_numpy_array(mean), nn.Variable.from_numpy_array(ln_var))
    assert isinstance(distribution.sample(), nn.Variable)
    
    # If you pass np.ndarray, then all class methods return np.ndarray
    # Currently, only support without batch shape (i.e. mean.shape = (dims,), ln_var.shape = (dims, dims)).
    distribution = D.Gaussian(mean[0], np.diag(ln_var[0]))  # without batch
    assert isinstance(distribution.sample(), np.ndarray)
    
    opened by sbsekiguchi 0
  • Support nnabla-browser

    Support nnabla-browser

    • [x] add MonitorWriter
    • [x] save computational graph as nntxt

    example

    import gym
    
    import nnabla_rl.algorithms as A
    import nnabla_rl.hooks as H
    import nnabla_rl.writers as W
    from nnabla_rl.utils.evaluator import EpisodicEvaluator
    
    # save training computational graph
    training_graph_hook = H.TrainingGraphHook(outdir="test")
    
    # evaluation hook with nnabla's Monitor
    eval_env = gym.make("Pendulum-v0")
    evaluator = EpisodicEvaluator(run_per_evaluation=10)
    evaluation_hook = H.EvaluationHook(
        eval_env,
        evaluator,
        timing=10,
        writer=W.MonitorWriter(outdir="test", file_prefix='evaluation_result'),
    )
    
    env = gym.make("Pendulum-v0")
    sac = A.SAC(env)
    sac.set_hooks([training_graph_hook, evaluation_hook])
    
    sac.train_online(env, total_iterations=100)
    

    image image

    opened by ishihara-y 0
  • Add iLQR and LQR

    Add iLQR and LQR

    Implementation of Linear Quadratic Regulator (LQR) and iterative LQR algorithms.

    Co-authored-by: Yu Ishihara [email protected] Co-authored-by: Shunichi Sekiguchi [email protected]

    opened by ishihara-y 0
  • Check np_random instance and use correct randint alternative

    Check np_random instance and use correct randint alternative

    I am not sure when this change was made but in some environment, gym.unwrapped.np_random returns Generator instead of RandomState.

    # in case of RandomState
    # this line works
    gym.unwrapped.np_random.rand_int(...)
    # in case of Generator
    # rand_int does not exist and we must use integers as an alternative
    gym.unwrapped.np_random.integers(...)
    

    This PR will fix this issue and chooses correct function for sampling integers.

    opened by ishihara-y 0
  • Add icra2018 qtopt

    Add icra2018 qtopt

    opened by sbsekiguchi 0
Releases(v0.12.0)
Owner
Sony
Sony Group Corporation
Sony
OMDB-and-TasteDive-Mashup - Mashing up data from two different APIs to make movie recommendations.

OMDB-and-TasteDive-Mashup This hadns-on project is in the Python 3 Programming Specialization offered by University of Michigan via Coursera. Mashing

Eszter Pai 1 Jan 05, 2022
Trust-minimized Bitcoin wallet

coldcore Trust-minimized, airgapped Bitcoin management This is experimental software. Wait for a formal release before use with real funds. A trust-mi

James O'Beirne 121 Jan 01, 2023
Discord bot written in python

Discord bot created by dpshark#3004 for fun List of features/commands: [keyword] responses tools !add [respons] Adds new response to [keyword] !remove

Daniel K.Gunleiksrud 3 Dec 28, 2021
Video-Player - Telegram Music/ Video Streaming Bot Using Pytgcalls

Video Player 🔥 ᴢᴀɪᴅ ᴠᴄ ᴘʟᴀyᴇʀ ɪꜱ ᴀ ᴛᴇʟᴇɢʀᴀᴍ ᴘʀᴏᴊᴇᴄᴛ ʙᴀꜱᴇᴅ ᴏɴ ᴘʏʀᴏɢʀᴀᴍ ꜰᴏʀ ᴘʟᴀʏ

Zaid 16 Nov 30, 2022
Simple integrate of API musixmatch.com with python

Python Musixmatch Simple integrate of API musixmatch.com with python Quick start $ pip install pymusixmatch or $ python setup.py install Authenticatio

Hudson Brendon 79 Dec 20, 2022
MVP monorepo to rapidly develop scalable, reliable, high-quality components for Amazon Linux instance configuration management

Ansible Amazon Base Repository Ansible Amazon Base Repository About Setting Up Ansible Environment Configuring Python VENV and Ansible Editor Configur

Artem Veremey 1 Aug 06, 2022
This Lambda will Pull propagated routes from TGW and update VPC route table

AWS-Transitgateway-Route-Propagation This Lambda will Pull propagated routes from TGW and update VPC route table. Tested on python 3.8 Lambda AWS INST

4 Jan 20, 2022
Watches your earnings on EarnApp and notifies you when you earned balance or received an payout.

EarnApp-Earning-Monitor Watches your earnings on EarnApp and notifies you when you earned balance or received an payout. Installation Install Python3

Yariya 21 Oct 17, 2022
Powerful Ethereum Smart-Contract Toolkit

Heimdall Heimdall is an advanced and modular smart-contract toolkit which aims to make dealing with smart contracts on EVM based chains easier. Instal

Jonathan Becker 69 Dec 26, 2022
DeKrypt 24 Sep 21, 2022
Bot per la chat live del corso di sistemi operativi UniBO

cravattaBot TL;DR: Ho fatto un bot telegram per la chat del corso di sistemi. Indice Installazione e prerequisiti Prerequisiti Installazione Setup Con

Alessandro Frau 3 May 21, 2022
pymobiledevice fork with more recent coding standards and many more features

Description Features Installation Usage Sending your own messages Lockdown messages Instruments messages Example Lockdown services com.apple.instrumen

255 Dec 28, 2022
Boto3 code assistance for any API in any IDE, always up to date

botostubs Gives you code assistance for any boto3 API in any IDE. Get started by running pip install botostubs Demo Features PyPI package automaticall

Jeshan Giovanni BABOOA 94 Nov 14, 2022
Music bot because Octave is down and I can : )

Chords On a mission to build the best Discord Music Bot View Demo · Report Bug · Request Feature Table of Contents About The Project Built With Gettin

Aman Prakash Jha 53 Jan 07, 2023
radiant discord anti nuke src leaked lol.

radiant-anti-wizz-leaked radiant discord anti nuke src leaked lol, the whole anti sucks but idc. sucks to suck thats tuff bro LMAOOOOOO join my server

ok 15 Aug 06, 2022
Darkflame Universe Account Manager

Darkflame Universe Account Manager This is a quick and simple web application intended for account creation and management for a DLU instance created

31 Nov 29, 2022
Library written in Python that wraps Halo Infinite API.

haloinfinite Library written in Python that wraps Halo Infinite API. Before start It's unofficial, reverse-engineered, neither stable nor production r

Miguel Ferrer 4 Dec 28, 2022
Python module and command line script client for http://urbandictionary.com

py-urbandict py-urbandict is a client for urbandictionary.com. Project page on github: https://github.com/novel/py-urbandict PyPI: https://pypi.org/pr

Roman Bogorodskiy 32 Oct 01, 2022
A Simple Advance Auto Filter Bot Complete Rewritten Version Of Adv-Filter-Bot

Adv Auto Filter Bot This Is Just An Simple Advance Auto Filter Bot Complete Rewritten Version Of Adv-Filter-Bot.. Just Sent Any Text As Query It Will

TeamShadow 4 Dec 10, 2021
Elemeno.ai standard development kit in Python

Overview A set of glue code and utilities to make using elemeno AI platform a smooth experience Free software: Apache Software License 2.0 Installatio

Elemeno AI 3 Dec 14, 2022