Hydra: an Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Related tags

Deep Learninghydra
Overview

Hydra: An Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Paper

Overview

Hydra is a state-of-the-art fuzzing framework for file systems. It provides building blocks for file system fuzzing, including multi-dimensional input mutators, feedback engines, a libOS-based executor, and a bug reproducer with test case minimizer. Developers only need to focus on writing (or bringing in) a checker which defines the core logic for finding the types of bugs of their own interests. Along with the framework, this repository includes our in-house developed crash consistency checker (SymC3), with which 11 new crash consistency bugs were revealed from ext4, Btrfs, F2FS, and from two verified file systems: FSCQ and Yxv6.

Contents

  • General code base

    • src/combined: Hydra input mutator
    • src/lkl/tools/lkl/{FS}-combined-consistency: Hydra LibOS-based Executor (will be downloaded and compiled during setup)
  • Checkers

    • src/emulator: Hydra's in-house crash consistency checker, SymC3

Setup

1. All setup should be done under src

$ cd src

2. Install dependencies

./dep.sh

3. Compile for each file system

$ make build-btrfs-imgwrp
  • We can do the same for other file systems:
$ make build-ext4-imgwrp
$ make build-f2fs-imgwrp
$ make build-xfs-imgwrp
  • (Skip if you want to test the latest kernel) To reproduce bugs presented in the SOSP'19 paper, do the following to back-port LKL to kernel 4.16.
$ cd lkl (pwd: proj_root/src/lkl) # assuming that you are in the src directory
$ make mrproper
$ git pull
$ git checkout v4.16-backport
$ ./compile -t btrfs
$ cd .. (pwd: proj_root/src)

4. Set up environments

$ sudo ./prepare_fuzzing.sh
$ ./prepare_env.sh

5. Run fuzzing (single / multiple instance)

  • Single instance
$ ./run.py -t [fstype] -c [cpu_id] -l [tmpfs_id] -g [fuzz_group]

-t: choose from btrfs, f2fs, ext4, xfs
-c: cpu id to run this fuzzer instance
-l: tmpfs id to store logs (choose one from /tmp/mosbench/tmpfs-separate/)
-g: specify group id for parallel fuzzing, default: 0

e.g., ./run.py -t btrfs -c 4 -l 10 -g 1
Runs btrfs fuzzer, and pins the instance to Core #4.
Logs will be accumulated under /tmp/mosbench/tmpfs-separate/10/log/ .
  • You can also run multiple fuzzers in parallel by doing:
[Terminal 1] ./run.py -t btrfs -c 1 -l 10 -g 1
[Terminal 2] ./run.py -t btrfs -c 2 -l 10 -g 1
[Terminal 3] ./run.py -t btrfs -c 3 -l 10 -g 1
[Terminal 4] ./run.py -t btrfs -c 4 -l 10 -g 1
// all btrfs bug logs will be under /tmp/mosbench/tmpfs-separate/10/log/

[Terminal 5] ./run.py -t f2fs -c 5 -l 11 -g 2
[Terminal 6] ./run.py -t f2fs -c 6 -l 11 -g 2
[Terminal 7] ./run.py -t f2fs -c 7 -l 11 -g 2
[Terminal 8] ./run.py -t f2fs -c 8 -l 11 -g 2
// all f2fs bug logs will be under /tmp/mosbench/tmpfs-separate/11/log/

6. Important note

It is highly encouraged that you use separate input, output, log directories for each file system, unless you are running fuzzers in parallel. If you reuse the same directories from previous testings of other file systems, it won't work properly.

7. Experiments

Please refer to EXPERIMENTS.md for detailed experiment information.

Contacts

Owner
gts3.org ([email protected])
https://gts3.org
gts3.org (<a href=[email protected])">
An intelligent, flexible grammar of machine learning.

An english representation of machine learning. Modify what you want, let us handle the rest. Overview Nylon is a python library that lets you customiz

Palash Shah 79 Dec 02, 2022
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
DNA-RECON { Automatic Web Reconnaissance Tool }

ABOUT TOOL : DNA-RECON is an automatic web reconnaissance tool written in python. This tool made for reconnaissance and information gathering with an

NIKUNJ BHATT 25 Aug 11, 2021
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
Pull sensitive data from users on windows including discord tokens and chrome data.

⭐ For a 🍪 Pegasus Pull sensitive data from users on windows including discord tokens and chrome data. Features 🟩 Discord tokens 🟩 Geolocation data

Addi 44 Dec 31, 2022
Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

4 Feb 03, 2022
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

117 Dec 28, 2022
Denoising Normalizing Flow

Denoising Normalizing Flow Christian Horvat and Jean-Pascal Pfister 2021 We combine Normalizing Flows (NFs) and Denoising Auto Encoder (DAE) by introd

CHrvt 17 Oct 15, 2022
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022
pyspark🍒🥭 is delicious,just eat it!😋😋

如何用10天吃掉pyspark? 🔥 🔥 《10天吃掉那只pyspark》 🚀

lyhue1991 578 Dec 30, 2022
Self-Supervised Methods for Noise-Removal

SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of

1 Jan 16, 2022
[ICLR 2022] DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR

DAB-DETR This is the official pytorch implementation of our ICLR 2022 paper DAB-DETR. Authors: Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi

336 Dec 25, 2022
A simple Python configuration file operator.

A simple Python configuration file operator This project provides a common way to read configurations using config42. Installation It is possible to i

Scott Lau 2 Nov 08, 2021
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Agustinus Kristiadi 7k Jan 02, 2023
StyleGAN - Official TensorFlow Implementation

StyleGAN — Official TensorFlow Implementation Picture: These people are not real – they were produced by our generator that allows control over differ

NVIDIA Research Projects 13.1k Jan 09, 2023
The official implementation of Theme Transformer

Theme Transformer This is the official implementation of Theme Transformer. Checkout our demo and paper : Demo | arXiv Environment: using python versi

Ian Shih 85 Dec 08, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
MakeItTalk: Speaker-Aware Talking-Head Animation

MakeItTalk: Speaker-Aware Talking-Head Animation This is the code repository implementing the paper: MakeItTalk: Speaker-Aware Talking-Head Animation

Adobe Research 285 Jan 08, 2023
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
The Hailo Model Zoo includes pre-trained models and a full building and evaluation environment

Hailo Model Zoo The Hailo Model Zoo provides pre-trained models for high-performance deep learning applications. Using the Hailo Model Zoo you can mea

Hailo 50 Dec 07, 2022