Fashion Landmark Estimation with HRNet

Overview

HRNet for Fashion Landmark Estimation

(Modified from deep-high-resolution-net.pytorch)

Introduction

This code applies the HRNet (Deep High-Resolution Representation Learning for Human Pose Estimation) onto fashion landmark estimation task using the DeepFashion2 dataset. HRNet maintains high-resolution representations throughout the forward path. As a result, the predicted keypoint heatmap is potentially more accurate and spatially more precise.

Illustrating the architecture of the proposed HRNet

Please note that every image in DeepFashion2 contains multiple fashion items, while our model assumes that there exists only one item in each image. Therefore, what we feed into the HRNet is not the original image but the cropped ones provided by a detector. In experiments, one can either use the ground truth bounding box annotation to generate the input data or use the output of a detecter.

Main Results

Landmark Estimation Performance on DeepFashion2 Test set

We won the third place in the "DeepFashion2 Challenge 2020 - Track 1 Clothes Landmark Estimation" competition. DeepFashion2 Challenge 2020 - Track 1 Clothes Landmark Estimation

Landmark Estimation Performance on DeepFashion2 Validation Set

Arch BBox Source AP Ap .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
pose_hrnet Detector 0.579 0.793 0.658 0.460 0.581 0.706 0.939 0.784 0.548 0.708
pose_hrnet GT 0.702 0.956 0.801 0.579 0.703 0.740 0.965 0.827 0.592 0.741

Quick start

Installation

  1. Install pytorch >= v1.2 following official instruction. Note that if you use pytorch's version < v1.0.0, you should follow the instruction at https://github.com/Microsoft/human-pose-estimation.pytorch to disable cudnn's implementations of BatchNorm layer. We encourage you to use higher pytorch's version(>=v1.0.0)

  2. Clone this repo, and we'll call the directory that you cloned as ${POSE_ROOT}.

  3. Install dependencies:

    pip install -r requirements.txt
    
  4. Make libs:

    cd ${POSE_ROOT}/lib
    make
    
  5. Init output(training model output directory) and log(tensorboard log directory) directory:

    mkdir output 
    mkdir log
    

    Your directory tree should look like this:

    ${POSE_ROOT}
    |-- lib
    |-- tools 
    |-- experiments
    |-- models
    |-- data
    |-- log
    |-- output
    |-- README.md
    `-- requirements.txt
    
  6. Download pretrained models from our Onedrive Cloud Storage

Data preparation

Our experiments were conducted on DeepFashion2, clone this repo, and we'll call the directory that you cloned as ${DF2_ROOT}.

1) Download the dataset

Extract the dataset under ${POSE_ROOT}/data.

2) Convert annotations into coco-type

The above code repo provides a script to convert annotations into coco-type.

We uploaded our converted annotation file onto OneDrive named as train/val-coco_style.json. We also made truncated json files such as train-coco_style-32.json meaning the first 32 samples in the dataset to save the loading time during development period.

3) Install the deepfashion_api

Enter ${DF2_ROOT}/deepfashion2_api/PythonAPI and run

python setup.py install

Note that the deepfashion2_api is modified from the cocoapi without changing the package name. Therefore, conflicts occur if you try to install this package when you have installed the original cocoapi in your computer. We provide two feasible solutions: 1) run our code in a virtualenv 2) use the deepfashion2_api as a local pacakge. Also note that deepfashion2_api is different with cocoapi mainly in the number of classes and the values of standard variations for keypoints.

At last the directory should look like this:

${POSE_ROOT}
|-- data
`-- |-- deepfashion2
    `-- |-- train
        |   |-- image
        |   |-- annos                           (raw annotation)
        |   |-- train-coco_style.json           (converted annotation file)
        |   `-- train-coco_style-32.json      (truncated for fast debugging)
        |-- validation
        |   |-- image
        |   |-- annos                           (raw annotation)
        |   |-- val-coco_style.json             (converted annotation file)
        |   `-- val-coco_style-64.json        (truncated for fast debugging)
        `-- json_for_test
            `-- keypoints_test_information.json

Training and Testing

Note that the GPUS parameter in the yaml config file is deprecated. To select GPUs, use the environment varaible:

 export CUDA_VISIBLE_DEVICES=1

Testing on DeepFashion2 dataset with BBox from ground truth using trained models:

python tools/test.py \
    --cfg experiments/deepfashion2/hrnet/w48_384x288_adam_lr1e-3.yaml \
    TEST.MODEL_FILE models/pose_hrnet-w48_384x288-deepfashion2_mAP_0.7017.pth \
    TEST.USE_GT_BBOX True

Testing on DeepFashion2 dataset with BBox from a detector using trained models:

python tools/test.py \
    --cfg experiments/deepfashion2/hrnet/w48_384x288_adam_lr1e-3.yaml \
    TEST.MODEL_FILE models/pose_hrnet-w48_384x288-deepfashion2_mAP_0.7017.pth \
    TEST.DEEPFASHION2_BBOX_FILE data/bbox_result_val.pkl \

Training on DeepFashion2 dataset using pretrained models:

python tools/train.py \
    --cfg experiments/deepfashion2/hrnet/w48_384x288_adam_lr1e-3.yaml \
     MODEL.PRETRAINED models/pose_hrnet-w48_384x288-deepfashion2_mAP_0.7017.pth

Other options

python tools/test.py \
    ... \
    DATASET.MINI_DATASET True \ # use a subset of the annotation to save loading time
    TAG 'experiment description' \ # this info will appear in the output directory name
    WORKERS 4 \ # num_of_worker for the dataloader
    TEST.BATCH_SIZE_PER_GPU 8 \
    TRAIN.BATCH_SIZE_PER_GPU 8 \

OneDrive Cloud Storage

OneDrive

We provide the following files:

  • Model checkpoint files
  • Converted annotation files in coco-type
  • Bounding box results from our self-implemented detector in a pickle file.
hrnet-for-fashion-landmark-estimation.pytorch
|-- models
|   `-- pose_hrnet-w48_384x288-deepfashion2_mAP_0.7017.pth
|
|-- data
|   |-- bbox_result_val.pkl
|   |
`-- |-- deepfashion2
    `---|-- train
        |   |-- train-coco_style.json           (converted annotation file)
        |   `-- train-coco_style-32.json      (truncated for fast debugging)
        `-- validation
            |-- val-coco_style.json             (converted annotation file)
            `-- val-coco_style-64.json        (truncated for fast debugging)
        

Discussion

Experiment Configuration

  • For the regression target of keypoint heatmaps, we tuned the standard deviation value sigma and finally set it to 2.
  • During training, we found that the data augmentation from the original code was too intensive which makes the training process unstable. We weakened the augmentation parameters and observed performance gain.
  • Due to the imbalance of classes in DeepFashion2 dataset, the model's performance on different classes varies a lot. Therefore, we adopted a weighted sampling strategy rather than the naive random shuffling strategy, and observed performance gain.
  • We expermented with the value of weight decay, and found that either 1e-4 or 1e-5 harms the performance. Therefore, we simply set weight decay to 0.
Owner
SVIP Lab
ShanghaiTech Vision and Intelligent Perception Lab
SVIP Lab
This repository contains implementations and illustrative code to accompany DeepMind publications

DeepMind Research This repository contains implementations and illustrative code to accompany DeepMind publications. Along with publishing papers to a

DeepMind 11.3k Dec 31, 2022
Code Repository for The Kaggle Book, Published by Packt Publishing

The Kaggle Book Data analysis and machine learning for competitive data science Code Repository for The Kaggle Book, Published by Packt Publishing "Lu

Packt 1.6k Jan 07, 2023
A deep-learning pipeline for segmentation of ambiguous microscopic images.

Welcome to Official repository of deepflash2 - a deep-learning pipeline for segmentation of ambiguous microscopic images. Quick Start in 30 seconds se

Matthias Griebel 39 Dec 19, 2022
Official Pytorch implementation for 2021 ICCV paper "Learning Motion Priors for 4D Human Body Capture in 3D Scenes" and trained models / data

Learning Motion Priors for 4D Human Body Capture in 3D Scenes (LEMO) Official Pytorch implementation for 2021 ICCV (oral) paper "Learning Motion Prior

165 Dec 19, 2022
Object Detection Projekt in GKI WS2021/22

tfObjectDetection Object Detection Projekt with tensorflow in GKI WS2021/22 Docker Container: docker run -it --name --gpus all -v path/to/project:p

Tim Eggers 1 Jul 18, 2022
A public available dataset for road boundary detection in aerial images

Topo-boundary This is the official github repo of paper Topo-boundary: A Benchmark Dataset on Topological Road-boundary Detection Using Aerial Images

Zhenhua Xu 79 Jan 04, 2023
Pytorch implementation for A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose Paper | Website | Data A-NeRF: Articulated Neural Radiance F

Shih-Yang Su 172 Dec 22, 2022
TUPÃ was developed to analyze electric field properties in molecular simulations

TUPÃ: Electric field analyses for molecular simulations What is TUPÃ? TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine

Marcelo D. Polêto 10 Jul 17, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
Project to create an open-source 6 DoF input device

6DInputs A Project to create open-source 3D printed 6 DoF input devices Note the plural ('6DInputs' and 'devices') in the headings. We would like seve

RepRap Ltd 47 Jul 28, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
Tello Drone Trajectory Tracking

With this library you can track the trajectory of your tello drone or swarm of drones in real time.

Kamran Asgarov 2 Oct 12, 2022
Code Release for the paper "TriBERT: Full-body Human-centric Audio-visual Representation Learning for Visual Sound Separation"

TriBERT This repository contains the code for the NeurIPS 2021 paper titled "TriBERT: Full-body Human-centric Audio-visual Representation Learning for

UBC Computer Vision Group 8 Aug 31, 2022
Tensorflow port of a full NetVLAD network

netvlad_tf The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide

Robotics and Perception Group 225 Nov 08, 2022
small collection of functions for neural networks

neurobiba other languages: RU small collection of functions for neural networks. very easy to use! Installation: pip install neurobiba See examples h

4 Aug 23, 2021
1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
EfficientDet (Scalable and Efficient Object Detection) implementation in Keras and Tensorflow

EfficientDet This is an implementation of EfficientDet for object detection on Keras and Tensorflow. The project is based on the official implementati

1.3k Dec 19, 2022
Sentiment analysis translations of the Bhagavad Gita

Sentiment and Semantic Analysis of Bhagavad Gita Translations It is well known that translations of songs and poems not only breaks rhythm and rhyming

Machine learning and Bayesian inference @ UNSW Sydney 3 Aug 01, 2022