Syllabus del curso IIC2115 - Programación como Herramienta para la Ingeniería 2022/I

Related tags

Deep LearningSyllabus
Overview

IIC2115 - Programación como Herramienta para la Ingeniería

Videos y tutoriales

  1. Tutorial CMD
  2. Tutorial Instalación Python y Jupyter
  3. Tutorial de git-GitHub

Evaluación

  1. Las evaluaciones serán efectuadas por medio de laboratorios y participación en clases. Se calculará la nota del curso N como:

    N = 0,8 x L + 0,2 x P

    Donde L el promedio de los laboratorios y P es la nota de participación.

Calendario

Capítulo 0
Instancia Fecha Recursos
Cátedra Lunes 07/03 Slides
Capítulo 1
Instancia Tópico Fecha Recursos
Cátedra parte a POO Lunes 14/03 Slides - Material - Ejercicio - Ticket
Ayudantía parte a POO Jueves 17/03 Slides - Código
Cátedra parte b Estructuras de datos Lunes 21/03 Slides - Material - Ejercicio - Ticket
Ayudantía parte b Estructuras de datos Jueves 24/03 Slides - Código
Laboratorio 1 Lunes 28/03 a Lunes 04/04 Enunciado - Ticket - Solución
Capítulo 2
Instancia Tópico Fecha Recursos
Cátedra parte a Análisis y visualización de datos Lunes 11/04 Slides - Ejemplos - Material - Ejercicio - Ticket
Ayudantía parte a Análisis y visualización de datos - Slides - Código
Cátedra parte b Modelos predictivos Lunes 18/04 Slides - Material - Ejercicio - Ticket
Ayudantía parte b Modelos predictivos Jueves 21/04 Slides - Código
Laboratorio 2 Lunes 25/04 a Lunes 02/05 Enunciado
Capítulo 3
Instancia Tópico Fecha Recursos
Cátedra parte a Datos geoespaciales y SIG Lunes 09/05 Notebooks - Slides - Ejemplos - Ejercicios - Ticket
Ayudantía parte a Datos geoespaciales y SIG Jueves 12/05 Slides - Código
Cátedra parte b Use de redes/grafos Lunes 16/05 Slides - Material - Ejercicio - Ticket
Ayudantía parte b Uso de redes/grafos Jueves 19/05 Slides - Código
Laboratorio 3 Enunciado

Notas

Las notas oficiales se irán actualizando en Canvas.

Entregas atrasadas de laboratorios

Tienen hasta 12 horas después de la hora de entrega de los laboratorios para llenar este formulario con los datos del commit que desean que sea revisado, en caso que no se llene el form dentro del plazo se revisará el último commit (de la carpeta LX correspondiente) dentro del plazo de entrega.

Recorrección

Si quiere recorregir, contará con una semana desde que se publica el feedback en su repositorio (a menos que se avise otro plazo de forma oficial), es decir, si el feedback se publica un lunes (entre las 0:00 y 23:59) tendrá plazo hasta el próximo lunes a las 23:59.

  • Solo puede mandar a recorregir por este formulario.
  • No se aceptarán correos para solicitar recorrección ni solicitudes fuera de plazo.
  • Sea explícito en lo que desea recorregir, brindando los argumentos correspondientes. Solicitudes del tipo "Revisar todo nuevamente", o "Debiera tener mayor puntaje" no serán consideradas.
  • Tenga en cuenta que al recorregir su nota puede subir, bajar o mantenerse.
  • El profesor/ayudante que revise su solicitud tiene la facultad de modificar puntaje en apartados no solicitados por el alumno.
  • La calificación obtenida luego de la recorrección no es apelable, la nota se actualizará en la planilla oficial y se publicará otro feedback respecto a la recorrección en las issues de su repositorio privado.

Contacto

El correo del curso es: [email protected]. Aquí pueden enviar sus inquietudes sobre el desarrollo del curso. Solicitudes de recorrección pedidas a través de este medio no serán consideradas.

Foro

La página de Issues se utilizará como foro para preguntas.

Otros Semestres

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022
The ARCA23K baseline system

ARCA23K Baseline System This is the source code for the baseline system associated with the ARCA23K dataset. Details about ARCA23K and the baseline sy

4 Jul 02, 2022
Rethinking Portrait Matting with Privacy Preserving

Rethinking Portrait Matting with Privacy Preserving This is the official repository of the paper Rethinking Portrait Matting with Privacy Preserving.

184 Jan 03, 2023
Unofficial Implementation of RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019)

RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019) This repository contains python (3.5.2) implementation of

Doyup Lee 222 Dec 21, 2022
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Do

Ronnie Rocket 55 Sep 14, 2022
Code for Towards Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games

Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games How to run our algorithm? Create the new environment using: conda

MARL @ SJTU 8 Dec 27, 2022
Face and Body Tracking for VRM 3D models on the web.

Kalidoface 3D - Face and Full-Body tracking for Vtubing on the web! A sequal to Kalidoface which supports Live2D avatars, Kalidoface 3D is a web app t

Rich 257 Jan 02, 2023
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Karush Suri 8 Nov 07, 2022
Hyperbolic Image Segmentation, CVPR 2022

Hyperbolic Image Segmentation, CVPR 2022 This is the implementation of paper Hyperbolic Image Segmentation (CVPR 2022). Repository structure assets :

Mina Ghadimi Atigh 46 Dec 29, 2022
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

CodingMan 45 Dec 12, 2022
Using OpenAI's CLIP to upscale and enhance images

CLIP Upscaler and Enhancer Using OpenAI's CLIP to upscale and enhance images Based on nshepperd's JAX CLIP Guided Diffusion v2.4 Sample Results Viewpo

Tripp Lyons 5 Jun 14, 2022
Decorator for PyMC3

sampled Decorator for reusable models in PyMC3 Provides syntactic sugar for reusable models with PyMC3. This lets you separate creating a generative m

Colin 50 Oct 08, 2021
Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.

TorchSeg This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch. Highlights Modular De

ycszen 1.4k Jan 02, 2023
Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data

FTLNet_Pytorch Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data 1. Introduction This repo is an unofficial

1 Nov 04, 2020
This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf

Behavior-Sequence-Transformer-Pytorch This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf This model

Jaime Ferrando Huertas 83 Jan 05, 2023
Official PyTorch implementation of "The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation" (ICCV 21).

CenterGroup This the official implementation of our ICCV 2021 paper The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person P

Dynamic Vision and Learning Group 43 Dec 25, 2022
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

Holy Wu 35 Jan 01, 2023
Underwater industrial application yolov5m6

This project wins the intelligent algorithm contest finalist award and stands out from over 2000teams in China Underwater Robot Professional Contest, entering the final of China Underwater Robot Prof

8 Nov 09, 2022
A GOOD REPRESENTATION DETECTS NOISY LABELS

A GOOD REPRESENTATION DETECTS NOISY LABELS This code is a PyTorch implementation of the paper: Prerequisites Python 3.6.9 PyTorch 1.7.1 Torchvision 0.

<a href=[email protected]"> 64 Jan 04, 2023