[CVPR'21] Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

Related tags

Deep LearningPTF
Overview

Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

This repository contains the implementation of our paper Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration . The code is largely based on Occupancy Networks - Learning 3D Reconstruction in Function Space.

You can find detailed usage instructions for training your own models and using pretrained models below.

If you find our code useful, please consider citing:

@InProceedings{PTF:CVPR:2021,
    author = {Shaofei Wang and Andreas Geiger and Siyu Tang},
    title = {Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration},
    booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
    year = {2021}
}

Installation

This repository has been tested on the following platforms:

  1. Python 3.7, PyTorch 1.6 with CUDA 10.2 and cuDNN 7.6.5, Ubuntu 20.04
  2. Python 3.7, PyTorch 1.6 with CUDA 10.1 and cuDNN 7.6.4, CentOS 7.9.2009

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called PTF using

conda env create -n PTF python=3.7
conda activate PTF

Second, install PyTorch 1.6 via the official PyTorch website.

Third, install dependencies via

pip install -r requirements.txt

Fourth, manually install pytorch-scatter.

Lastly, compile the extension modules. You can do this via

python setup.py build_ext --inplace

(Optional) if you want to use the registration code under smpl_registration/, you need to install kaolin. Download the code from the kaolin repository, checkout to commit e7e513173bd4159ae45be6b3e156a3ad156a3eb9 and install it according to the instructions.

(Optional) if you want to train/evaluate single-view models (which corresponds to configurations in configs/cape_sv), you need to install OpenDR to render depth images. You need to first install OSMesa, here is the command of installing it on Ubuntu:

sudo apt-get install libglu1-mesa-dev freeglut3-dev mesa-common-dev libosmesa6-dev

For installing OSMesa on CentOS 7, please check this related issue. After installing OSMesa, install OpenDR via:

pip install opendr

Build the dataset

To prepare the dataset for training/evaluation, you have to first download the CAPE dataset from the CAPE website.

  1. Download SMPL v1.0, clean-up the chumpy objects inside the models using this code, and rename the files and extract them to ./body_models/smpl/, eventually, the ./body_models folder should have the following structure:
    body_models
     └-- smpl
     	├-- male
     	|   └-- model.pkl
     	└-- female
     	    └-- model.pkl
    
    

Besides the SMPL models, you will also need to download all the .pkl files from IP-Net repository and put them under ./body_models/misc/. Finally, run the following script to extract necessary SMPL parameters used in our code:

python extract_smpl_parameters.py

The extracted SMPL parameters will be save into ./body_models/misc/.

  1. Extract CAPE dataset to an arbitrary path, denoted as ${CAPE_ROOT}. The extracted dataset should have the following structure:
    ${CAPE_ROOT}
     ├-- 00032
     ├-- 00096
     |   ...
     ├-- 03394
     └-- cape_release
    
    
  2. Create data directory under the project directory.
  3. Modify the parameters in preprocess/build_dataset.sh accordingly (i.e. modify the --dataset_path to ${CAPE_ROOT}) to extract training/evaluation data.
  4. Run preprocess/build_dataset.sh to preprocess the CAPE dataset.

Pre-trained models

We provide pre-trained PTF and IP-Net models with two encoder resolutions, that is, 64x3 and 128x3. After downloading them, please put them under respective directories ./out/cape or ./out/cape_sv.

Generating Meshes

To generate all evaluation meshes using a trained model, use

python generate.py configs/cape/{config}.yaml

Alternatively, if you want to parallelize the generation on a HPC cluster, use:

python generate.py --subject-idx ${SUBJECT_IDX} --sequence-idx ${SEQUENCE_IDX} configs/cape/${config}.yaml

to generate meshes for specified subject/sequence combination. A list of all subject/sequence combinations can be found in ./misc/subject_sequence.txt.

SMPL/SMPL+D Registration

To register SMPL/SMPL+D models to the generated meshes, use either of the following:

python smpl_registration/fit_SMPLD_PTFs.py --num-joints 24 --use-parts --init-pose configs/cape/${config}.yaml # for PTF
python smpl_registration/fit_SMPLD_PTFs.py --num-joints 14 --use-parts configs/cape/${config}.yaml # for IP-Net

Note that registration is very slow, taking roughly 1-2 minutes per frame. If you have access to HPC cluster, it is advised to parallelize over subject/sequence combinations using the same subject/sequence input arguments for generating meshes.

Training

Finally, to train a new network from scratch, run

python train.py --num_workers 8 configs/cape/${config}.yaml

You can monitor on http://localhost:6006 the training process using tensorboard:

tensorboard --logdir ${OUTPUT_DIR}/logs --port 6006

where you replace ${OUTPUT_DIR} with the respective output directory.

License

We employ MIT License for the PTF code, which covers

extract_smpl_parameters.py
generate.py
train.py
setup.py
im2mesh/
preprocess/

Modules not covered by our license are modified versions from IP-Net (./smpl_registration) and SMPL-X (./human_body_prior); for these parts, please consult their respective licenses and cite the respective papers.

Transformer in Computer Vision

Transformer-in-Vision A paper list of some recent Transformer-based CV works. If you find some ignored papers, please open issues or pull requests. **

506 Dec 26, 2022
Complementary Patch for Weakly Supervised Semantic Segmentation, ICCV21 (poster)

CPN (ICCV2021) This is an implementation of Complementary Patch for Weakly Supervised Semantic Segmentation, which is accepted by ICCV2021 poster. Thi

Ferenas 20 Dec 12, 2022
Node-level Graph Regression with Deep Gaussian Process Models

Node-level Graph Regression with Deep Gaussian Process Models Prerequests our implementation is mainly based on tensorflow 1.x and gpflow 1.x: python

1 Jan 16, 2022
Image Restoration Using Swin Transformer for VapourSynth

SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t

Holy Wu 11 Jun 19, 2022
A pytorch-version implementation codes of paper: "BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation"

BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation A pytorch-version implementation

11 Oct 08, 2022
This is a tensorflow-based rotation detection benchmark, also called AlphaRotate.

AlphaRotate: A Rotation Detection Benchmark using TensorFlow Abstract AlphaRotate is maintained by Xue Yang with Shanghai Jiao Tong University supervi

yangxue 972 Jan 05, 2023
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
Motion and Shape Capture from Sparse Markers

MoSh++ This repository contains the official chumpy implementation of mocap body solver used for AMASS: AMASS: Archive of Motion Capture as Surface Sh

Nima Ghorbani 135 Dec 23, 2022
Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES)

Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES) This repo contains the full NITRATES pipeline for maximum likelihood-driven discov

13 Nov 08, 2022
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 799 Dec 28, 2022
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022
TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

912 Jan 08, 2023
Automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure

fwhr-calc-website This project is to automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azur

SoohyunPark 1 Feb 07, 2022
Implementation for Homogeneous Unbalanced Regularized Optimal Transport

HUROT: An Homogeneous formulation of Unbalanced Regularized Optimal Transport. This repository provides code related to this preprint. This is an alph

Théo Lacombe 1 Feb 17, 2022
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we

Alper Baris CELIK 14 Dec 20, 2022
This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes.

Rotate-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes. Section I. Description The codes are

xinzelee 90 Dec 13, 2022
Training a deep learning model on the noisy CIFAR dataset

Training-a-deep-learning-model-on-the-noisy-CIFAR-dataset This repository contai

1 Jun 14, 2022
BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands.

BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands. Keeping statistics of whom are most visible and recognisable in the series and wether or not it has an im

Frederik 2 Jan 04, 2022
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
Codes for the ICCV'21 paper "FREE: Feature Refinement for Generalized Zero-Shot Learning"

FREE This repository contains the reference code for the paper "FREE: Feature Refinement for Generalized Zero-Shot Learning". [arXiv][Paper] 1. Prepar

Shiming Chen 28 Jul 29, 2022