PyTorch Implementation for AAAI'21 "Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection"

Overview

UMS for Multi-turn Response Selection

PWC

Implements the model described in the following paper Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection.

@inproceedings{whang2021ums,
  title={Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection},
  author={Whang, Taesun and Lee, Dongyub and Oh, Dongsuk and Lee, Chanhee and Han, Kijong and Lee, Dong-hun and Lee, Saebyeok},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2021}
}

This code is reimplemented as a fork of huggingface/transformers and taesunwhang/BERT-ResSel.

alt text

Setup and Dependencies

This code is implemented using PyTorch v1.6.0, and provides out of the box support with CUDA 10.1 and CuDNN 7.6.5.

Anaconda / Miniconda is the recommended to set up this codebase.

Anaconda or Miniconda

Clone this repository and create an environment:

git clone https://www.github.com/taesunwhang/UMS-ResSel
conda create -n ums_ressel python=3.7

# activate the environment and install all dependencies
conda activate ums_ressel
cd UMS-ResSel

# https://pytorch.org
pip install torch==1.6.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt

Preparing Data and Checkpoints

Pre- and Post-trained Checkpoints

We provide following pre- and post-trained checkpoints.

sh scripts/download_pretrained_checkpoints.sh

Data pkls for Fine-tuning (Response Selection)

Original version for each dataset is availble in Ubuntu Corpus V1, Douban Corpus, and E-Commerce Corpus, respectively.

sh scripts/download_datasets.sh

Domain-specific Post-Training

Post-training Creation

Data for post-training BERT
#Ubuntu Corpus V1
sh scripts/create_bert_post_data_creation_ubuntu.sh
#Douban Corpus
sh scripts/create_bert_post_data_creation_douban.sh
#E-commerce Corpus
sh scripts/create_bert_post_data_creation_e-commerce.sh
Data for post-training ELECTRA
sh scripts/download_electra_post_training_pkl.sh

Post-training Examples

BERT+ (e.g., Ubuntu Corpus V1)
python3 main.py --model bert_post_training --task_name ubuntu --data_dir data/ubuntu_corpus_v1 --bert_pretrained bert-base-uncased --bert_checkpoint_path bert-base-uncased-pytorch_model.bin --task_type response_selection --gpu_ids "0" --root_dir /path/to/root_dir --training_type post_training
ELECTRA+ (e.g., Douban Corpus)
python3 main.py --model electra_post_training --task_name douban --data_dir data/electra_post_training --bert_pretrained electra-base-chinese --bert_checkpoint_path electra-base-chinese-pytorch_model.bin --task_type response_selection --gpu_ids "0" --root_dir /path/to/root_dir --training_type post_training

Training Response Selection Models

Model Arguments

BERT-Base
task_name data_dir bert_pretrained bert_checkpoint_path
ubuntu data/ubuntu_corpus_v1 bert-base-uncased bert-base-uncased-pytorch_model.bin
douban
e-commerce
data/douban
data/e-commerce
bert-base-wwm-chinese bert-base-wwm-chinese_model.bin
BERT-Post
task_name data_dir bert_pretrained bert_checkpoint_path
ubuntu data/ubuntu_corpus_v1 bert-post-uncased bert-post-uncased-pytorch_model.pth
douban data/douban bert-post-douban bert-post-douban-pytorch_model.pth
e-commerce data/e-commerce bert-post-ecommerce bert-post-ecommerce-pytorch_model.pth
ELECTRA-Base
task_name data_dir bert_pretrained bert_checkpoint_path
ubuntu data/ubuntu_corpus_v1 electra-base electra-base-pytorch_model.bin
douban
e-commerce
data/douban
data/e-commerce
electra-base-chinese electra-base-chinese-pytorch_model.bin
ELECTRA-Post
task_name data_dir bert_pretrained bert_checkpoint_path
ubuntu data/ubuntu_corpus_v1 electra-post electra-post-pytorch_model.pth
douban data/douban electra-post-douban electra-post-douban-pytorch_model.pth
e-commerce data/e-commerce electra-post-ecommerce electra-post-ecommerce-pytorch_model.pth

Fine-tuning Examples

BERT+ (e.g., Ubuntu Corpus V1)
python3 main.py --model bert_post --task_name ubuntu --data_dir data/ubuntu_corpus_v1 --bert_pretrained bert-post-uncased --bert_checkpoint_path bert-post-uncased-pytorch_model.pth --task_type response_selection --gpu_ids "0" --root_dir /path/to/root_dir
UMS BERT+ (e.g., Douban Corpus)
python3 main.py --model bert_post --task_name douban --data_dir data/douban --bert_pretrained bert-post-douban --bert_checkpoint_path bert-post-douban-pytorch_model.pth --task_type response_selection --gpu_ids "0" --root_dir /path/to/root_dir --multi_task_type "ins,del,srch"
UMS ELECTRA (e.g., E-Commerce)
python3 main.py --model electra_base --task_name e-commerce --data_dir data/e-commerce --bert_pretrained electra-base-chinese --bert_checkpoint_path electra-base-chinese-pytorch_model.bin --task_type response_selection --gpu_ids "0" --root_dir /path/to/root_dir --multi_task_type "ins,del,srch"

Evaluation

To evaluate the model, set --evaluate to /path/to/checkpoints

UMS BERT+ (e.g., Ubuntu Corpus V1)
python3 main.py --model bert_post --task_name ubuntu --data_dir data/ubuntu_corpus_v1 --bert_pretrained bert-post-uncased --bert_checkpoint_path bert-post-uncased-pytorch_model.pth --task_type response_selection --gpu_ids "0" --root_dir /path/to/root_dir --evaluate /path/to/checkpoints --multi_task_type "ins,del,srch"

Performance

We provide model checkpoints of UMS-BERT+, which obtained new state-of-the-art, for each dataset.

Ubuntu [email protected] [email protected] [email protected]
UMS-BERT+ 0.875 0.942 0.988
Douban MAP MRR [email protected] [email protected] [email protected] [email protected]
UMS-BERT+ 0.625 0.664 0.499 0.318 0.482 0.858
E-Commerce [email protected] [email protected] [email protected]
UMS-BERT+ 0.762 0.905 0.986
Owner
Taesun Whang
Interested in NLP, Dialogue System, Multimodal Learning. Currently attending Master's course in Dept. of Computer Science and Engineering, Korea University.
Taesun Whang
Extreme Lightwegith Portrait Segmentation

Extreme Lightwegith Portrait Segmentation Please go to this link to download code Requirements python 3 pytorch = 0.4.1 torchvision==0.2.1 opencv-pyt

HYOJINPARK 59 Dec 16, 2022
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

ming71 46 Dec 02, 2022
Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting

Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting 1. Classification Task PyTorch implementat

Yongho Kim 0 Apr 24, 2022
This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

Hansheng Jiang 6 Nov 18, 2022
Official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION.

IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION This is the official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSU

电线杆 14 Dec 15, 2022
GLIP: Grounded Language-Image Pre-training

GLIP: Grounded Language-Image Pre-training Updates 12/06/2021: GLIP paper on arxiv https://arxiv.org/abs/2112.03857. Code and Model are under internal

Microsoft 862 Jan 01, 2023
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
Remote sensing change detection using PaddlePaddle

Change Detection Laboratory Developing and benchmarking deep learning-based remo

Lin Manhui 15 Sep 23, 2022
Fast image augmentation library and an easy-to-use wrapper around other libraries

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Job-Recommend-Competition - Vectorwise Interpretable Attentions for Multimodal Tabular Data

SiD - Simple Deep Model Vectorwise Interpretable Attentions for Multimodal Tabul

Jungwoo Park 40 Dec 22, 2022
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 07, 2022
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
Moment-DETR code and QVHighlights dataset

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
Official PyTorch Implementation of Convolutional Hough Matching Networks, CVPR 2021 (oral)

Convolutional Hough Matching Networks This is the implementation of the paper "Convolutional Hough Matching Network" by J. Min and M. Cho. Implemented

Juhong Min 70 Nov 22, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
Pose estimation for iOS and android using TensorFlow 2.0

💃 Mobile 2D Single Person (Or Your Own Object) Pose Estimation for TensorFlow 2.0 This repository is forked from edvardHua/PoseEstimationForMobile wh

tucan9389 165 Nov 16, 2022
This project contains an implemented version of Face Detection using OpenCV and Mediapipe. This is a code snippet and can be used in projects.

Live-Face-Detection Project Description: In this project, we will be using the live video feed from the camera to detect Faces. It will also detect so

Hassan Shahzad 3 Oct 02, 2021
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
Connecting Java/ImgLib2 + Python/NumPy

imglyb imglyb aims at connecting two worlds that have been seperated for too long: Python with numpy Java with ImgLib2 imglyb uses jpype to access num

ImgLib2 29 Dec 21, 2022