PyTorch Implementation for AAAI'21 "Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection"

Overview

UMS for Multi-turn Response Selection

PWC

Implements the model described in the following paper Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection.

@inproceedings{whang2021ums,
  title={Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection},
  author={Whang, Taesun and Lee, Dongyub and Oh, Dongsuk and Lee, Chanhee and Han, Kijong and Lee, Dong-hun and Lee, Saebyeok},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2021}
}

This code is reimplemented as a fork of huggingface/transformers and taesunwhang/BERT-ResSel.

alt text

Setup and Dependencies

This code is implemented using PyTorch v1.6.0, and provides out of the box support with CUDA 10.1 and CuDNN 7.6.5.

Anaconda / Miniconda is the recommended to set up this codebase.

Anaconda or Miniconda

Clone this repository and create an environment:

git clone https://www.github.com/taesunwhang/UMS-ResSel
conda create -n ums_ressel python=3.7

# activate the environment and install all dependencies
conda activate ums_ressel
cd UMS-ResSel

# https://pytorch.org
pip install torch==1.6.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt

Preparing Data and Checkpoints

Pre- and Post-trained Checkpoints

We provide following pre- and post-trained checkpoints.

sh scripts/download_pretrained_checkpoints.sh

Data pkls for Fine-tuning (Response Selection)

Original version for each dataset is availble in Ubuntu Corpus V1, Douban Corpus, and E-Commerce Corpus, respectively.

sh scripts/download_datasets.sh

Domain-specific Post-Training

Post-training Creation

Data for post-training BERT
#Ubuntu Corpus V1
sh scripts/create_bert_post_data_creation_ubuntu.sh
#Douban Corpus
sh scripts/create_bert_post_data_creation_douban.sh
#E-commerce Corpus
sh scripts/create_bert_post_data_creation_e-commerce.sh
Data for post-training ELECTRA
sh scripts/download_electra_post_training_pkl.sh

Post-training Examples

BERT+ (e.g., Ubuntu Corpus V1)
python3 main.py --model bert_post_training --task_name ubuntu --data_dir data/ubuntu_corpus_v1 --bert_pretrained bert-base-uncased --bert_checkpoint_path bert-base-uncased-pytorch_model.bin --task_type response_selection --gpu_ids "0" --root_dir /path/to/root_dir --training_type post_training
ELECTRA+ (e.g., Douban Corpus)
python3 main.py --model electra_post_training --task_name douban --data_dir data/electra_post_training --bert_pretrained electra-base-chinese --bert_checkpoint_path electra-base-chinese-pytorch_model.bin --task_type response_selection --gpu_ids "0" --root_dir /path/to/root_dir --training_type post_training

Training Response Selection Models

Model Arguments

BERT-Base
task_name data_dir bert_pretrained bert_checkpoint_path
ubuntu data/ubuntu_corpus_v1 bert-base-uncased bert-base-uncased-pytorch_model.bin
douban
e-commerce
data/douban
data/e-commerce
bert-base-wwm-chinese bert-base-wwm-chinese_model.bin
BERT-Post
task_name data_dir bert_pretrained bert_checkpoint_path
ubuntu data/ubuntu_corpus_v1 bert-post-uncased bert-post-uncased-pytorch_model.pth
douban data/douban bert-post-douban bert-post-douban-pytorch_model.pth
e-commerce data/e-commerce bert-post-ecommerce bert-post-ecommerce-pytorch_model.pth
ELECTRA-Base
task_name data_dir bert_pretrained bert_checkpoint_path
ubuntu data/ubuntu_corpus_v1 electra-base electra-base-pytorch_model.bin
douban
e-commerce
data/douban
data/e-commerce
electra-base-chinese electra-base-chinese-pytorch_model.bin
ELECTRA-Post
task_name data_dir bert_pretrained bert_checkpoint_path
ubuntu data/ubuntu_corpus_v1 electra-post electra-post-pytorch_model.pth
douban data/douban electra-post-douban electra-post-douban-pytorch_model.pth
e-commerce data/e-commerce electra-post-ecommerce electra-post-ecommerce-pytorch_model.pth

Fine-tuning Examples

BERT+ (e.g., Ubuntu Corpus V1)
python3 main.py --model bert_post --task_name ubuntu --data_dir data/ubuntu_corpus_v1 --bert_pretrained bert-post-uncased --bert_checkpoint_path bert-post-uncased-pytorch_model.pth --task_type response_selection --gpu_ids "0" --root_dir /path/to/root_dir
UMS BERT+ (e.g., Douban Corpus)
python3 main.py --model bert_post --task_name douban --data_dir data/douban --bert_pretrained bert-post-douban --bert_checkpoint_path bert-post-douban-pytorch_model.pth --task_type response_selection --gpu_ids "0" --root_dir /path/to/root_dir --multi_task_type "ins,del,srch"
UMS ELECTRA (e.g., E-Commerce)
python3 main.py --model electra_base --task_name e-commerce --data_dir data/e-commerce --bert_pretrained electra-base-chinese --bert_checkpoint_path electra-base-chinese-pytorch_model.bin --task_type response_selection --gpu_ids "0" --root_dir /path/to/root_dir --multi_task_type "ins,del,srch"

Evaluation

To evaluate the model, set --evaluate to /path/to/checkpoints

UMS BERT+ (e.g., Ubuntu Corpus V1)
python3 main.py --model bert_post --task_name ubuntu --data_dir data/ubuntu_corpus_v1 --bert_pretrained bert-post-uncased --bert_checkpoint_path bert-post-uncased-pytorch_model.pth --task_type response_selection --gpu_ids "0" --root_dir /path/to/root_dir --evaluate /path/to/checkpoints --multi_task_type "ins,del,srch"

Performance

We provide model checkpoints of UMS-BERT+, which obtained new state-of-the-art, for each dataset.

Ubuntu [email protected] [email protected] [email protected]
UMS-BERT+ 0.875 0.942 0.988
Douban MAP MRR [email protected] [email protected] [email protected] [email protected]
UMS-BERT+ 0.625 0.664 0.499 0.318 0.482 0.858
E-Commerce [email protected] [email protected] [email protected]
UMS-BERT+ 0.762 0.905 0.986
Owner
Taesun Whang
Interested in NLP, Dialogue System, Multimodal Learning. Currently attending Master's course in Dept. of Computer Science and Engineering, Korea University.
Taesun Whang
Bayesian Optimization Library for Medical Image Segmentation.

bayesmedaug: Bayesian Optimization Library for Medical Image Segmentation. bayesmedaug optimizes your data augmentation hyperparameters for medical im

Şafak Bilici 7 Feb 10, 2022
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

5 Jun 28, 2022
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022
Tutorial repo for an end-to-end Data Science project

End-to-end Data Science project This is the repo with the notebooks, code, and additional material used in the ITI's workshop. The goal of the session

Deena Gergis 127 Dec 30, 2022
CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images

CurriculumNet Introduction This repo contains related code and models from the ECCV 2018 CurriculumNet paper. CurriculumNet is a new training strategy

156 Jul 04, 2022
PyTorch implementation of MICCAI 2018 paper "Liver Lesion Detection from Weakly-labeled Multi-phase CT Volumes with a Grouped Single Shot MultiBox Detector"

Grouped SSD (GSSD) for liver lesion detection from multi-phase CT Note: the MICCAI 2018 paper only covers the multi-phase lesion detection part of thi

Sang-gil Lee 36 Oct 12, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation

CorrNet This project provides the code and results for 'Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation'

Gongyang Li 13 Nov 03, 2022
The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting".

IGMTF The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting". Requirements The framework

Wentao Xu 24 Dec 05, 2022
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
Lightwood is Legos for Machine Learning.

Lightwood is like Legos for Machine Learning. A Pytorch based framework that breaks down machine learning problems into smaller blocks that can be glu

MindsDB Inc 312 Jan 08, 2023
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."

Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is

BoChen 12 Jan 01, 2023
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
The Environment I built to study Reinforcement Learning + Pokemon Showdown

pokemon-showdown-rl-environment The Environment I built to study Reinforcement Learning + Pokemon Showdown Been a while since I ran this. Think it is

3 Jan 16, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Single-Stage 6D Object Pose Estimation, CVPR 2020

Overview This repository contains the code for the paper Single-Stage 6D Object Pose Estimation. Yinlin Hu, Pascal Fua, Wei Wang and Mathieu Salzmann.

CVLAB @ EPFL 89 Dec 26, 2022
Weakly Supervised Text-to-SQL Parsing through Question Decomposition

Weakly Supervised Text-to-SQL Parsing through Question Decomposition The official repository for the paper "Weakly Supervised Text-to-SQL Parsing thro

14 Dec 19, 2022
This repository contains the code to replicate the analysis from the paper "Moving On - Investigating Inventors' Ethnic Origins Using Supervised Learning"

Replication Code for 'Moving On' - Investigating Inventors' Ethnic Origins Using Supervised Learning This repository contains the code to replicate th

Matthias Niggli 0 Jan 04, 2022
A Haskell kernel for IPython.

IHaskell You can now try IHaskell directly in your browser at CoCalc or mybinder.org. Alternatively, watch a talk and demo showing off IHaskell featur

Andrew Gibiansky 2.4k Dec 29, 2022