This repo is the code release of EMNLP 2021 conference paper "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories".

Overview

Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories

This repo is the code release of EMNLP 2021 conference paper "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories".

1. install python environment.

Follow the instruction of "env_install.txt" to create python virtual environment and install necessary packages. The environment is tested on python >=3.6 and pytorch >=1.8.

2. Gloss alignment algorithm.

Change your dictionary data format into the data format of "wordnet_def.txt" in "data/". Run the following commands to get gloss alignment results.

cd run_align_definitions_main/
python ../model/align_definitions_main.py

3. Download the pretrained model and data.

Visit https://drive.google.com/drive/folders/1I5-iOfWr1E32ahYDCbHKCssMdm74_JXG?usp=sharing. Download the pretrained model (SemEq-General-Large which is based on Roberta-Large) and put it under run_robertaLarge_model_span_WSD_twoStageTune/ and also run_robertaLarge_model_span_FEWS_twoStageTune/. Please make sure that the downloaded model file name is "pretrained_model_CrossEntropy.pt". The script will load the general model and fine-tune on specific WSD datasets to get the expert model.

4. Fine-tune the general model to get an expert model (SemEq-Expert-Large).

All-words WSD:

cd run_robertaLarge_model_span_WSD_twoStageTune/
python ../BERT_model_span/BERT_model_main.py --gpu_id 0 --prepare_data True --eval_dataset WSD --exp_mode twoStageTune --optimizer AdamW --learning_rate 2e-6 --bert_model roberta_large --batch_size 16

Few-shot WSD (FEWS):

cd run_robertaLarge_model_span_FEWS_twoStageTune/
python ../BERT_model_span/BERT_model_main.py --gpu_id 0 --prepare_data True --eval_dataset FEWS --exp_mode twoStageTune --optimizer AdamW --learning_rate 5e-6 --bert_model roberta_large --batch_size 16

5. Evaluate results.

All-words WSD: (you can try different epochs)

cd run_robertaLarge_model_span_WSD_twoStageTune/
python ../evaluate/evaluate_WSD.py --loss CrossEntropy --epoch 1
python ../evaluate/evaluate_WSD_POS.py

Few-shot WSD (FEWS): (you can try different epochs)

cd run_robertaLarge_model_span_FEWS_twoStageTune/
python ../evaluate/evaluate_FEWS.py --loss CrossEntropy --epoch 1

Note that the best results of test set on few-shot setting or zero-shot setting are selected based on dev set across epochs, respectively.

Extra. Apply the trained model to any given sentences to do WSD.

After training, you can apply the trained model (trained_model_CrossEntropy.pt) to any sentences. Examples are included in data_custom/. Examples are based on glosses in WordNet3.0.

cd run_BERT_model_span_CustomData/
python ../BERT_model_span/BERT_model_main.py --gpu_id 0 --prepare_data True --eval_dataset custom_data --exp_mode eval --bert_model roberta_large --batch_size 16

If you think this repo is useful, please cite our work. Thanks!

@inproceedings{yao-etal-2021-connect,
    title = "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories",
    author = "Yao, Wenlin  and
      Pan, Xiaoman  and
      Jin, Lifeng  and
      Chen, Jianshu  and
      Yu, Dian  and
      Yu, Dong",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.610",
    pages = "7741--7751",
}

Disclaimer: This repo is only for research purpose. It is not an officially supported Tencent product.

Owner
Research repositories.
Scenarios, tutorials and demos for Autonomous Driving

The Autonomous Driving Cookbook (Preview) NOTE: This project is developed and being maintained by Project Road Runner at Microsoft Garage. This is cur

Microsoft 2.1k Jan 02, 2023
[CVPR2021 Oral] UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

UP-DETR: Unsupervised Pre-training for Object Detection with Transformers This is the official PyTorch implementation and models for UP-DETR paper: @a

dddzg 430 Dec 23, 2022
NeurIPS-2021: Neural Auto-Curricula in Two-Player Zero-Sum Games.

NAC Official PyTorch implementation of NAC from the paper: Neural Auto-Curricula in Two-Player Zero-Sum Games. We release code for: Gradient based ora

Xidong Feng 19 Nov 11, 2022
An implementation of an abstract algebra for music tones (pitches).

nbdev template Use this template to more easily create your nbdev project. If you are using an older version of this template, and want to upgrade to

Open Music Kit 0 Oct 10, 2022
Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy Simplex Algorithm is a popular algorithm for linear programmi

Reda BELHAJ 2 Oct 12, 2022
MEND: Model Editing Networks using Gradient Decomposition

MEND: Model Editing Networks using Gradient Decomposition Setup Environment This codebase uses Python 3.7.9. Other versions may work as well. Create a

Eric Mitchell 141 Dec 02, 2022
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022
Learning Continuous Signed Distance Functions for Shape Representation

DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a

Meta Research 1.1k Jan 01, 2023
A PyTorch implementation of the paper Mixup: Beyond Empirical Risk Minimization in PyTorch

Mixup: Beyond Empirical Risk Minimization in PyTorch This is an unofficial PyTorch implementation of mixup: Beyond Empirical Risk Minimization. The co

Harry Yang 121 Dec 17, 2022
A "gym" style toolkit for building lightweight Neural Architecture Search systems

A "gym" style toolkit for building lightweight Neural Architecture Search systems

Jack Turner 12 Nov 05, 2022
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Subin An 8 Nov 21, 2022
Scikit-event-correlation - Event Correlation and Forecasting over High Dimensional Streaming Sensor Data algorithms

scikit-event-correlation Event Correlation and Changing Detection Algorithm Theo

Intellia ICT 5 Oct 30, 2022
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
[AAAI 2021] MVFNet: Multi-View Fusion Network for Efficient Video Recognition

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

Wenhao Wu 114 Nov 27, 2022
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
Image Segmentation using U-Net, U-Net with skip connections and M-Net architectures

Brain-Image-Segmentation Segmentation of brain tissues in MRI image has a number of applications in diagnosis, surgical planning, and treatment of bra

Angad Bajwa 8 Oct 27, 2022
Sionna: An Open-Source Library for Next-Generation Physical Layer Research

Sionna: An Open-Source Library for Next-Generation Physical Layer Research Sionnaâ„¢ is an open-source Python library for link-level simulations of digi

NVIDIA Research Projects 313 Dec 22, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 08, 2023
End-to-end beat and downbeat tracking in the time domain.

WaveBeat End-to-end beat and downbeat tracking in the time domain. | Paper | Code | Video | Slides | Setup First clone the repo. git clone https://git

Christian J. Steinmetz 60 Dec 24, 2022