Textpipe: clean and extract metadata from text

Overview

textpipe: clean and extract metadata from text

Build Status

The textpipe logo

textpipe is a Python package for converting raw text in to clean, readable text and extracting metadata from that text. Its functionalities include transforming raw text into readable text by removing HTML tags and extracting metadata such as the number of words and named entities from the text.

Vision: the zen of textpipe

  • Designed for use in production pipelines without adult supervision.
  • Rechargeable batteries included: provide sane defaults and clear examples to adapt.
  • A uniform interface with thin wrappers around state-of-the-art NLP packages.
  • As language-agnostic as possible.
  • Bring your own models.

Features

  • Clean raw text by removing HTML and other unreadable constructs
  • Identify the language of text
  • Extract the number of words, number of sentences, named entities from a text
  • Calculate the complexity of a text
  • Obtain text metadata by specifying a pipeline containing all desired elements
  • Obtain sentiment (polarity and a subjectivity score)
  • Generates word counts
  • Computes minhash for cheap similarity estimation of documents

Installation

It is recommended that you install textpipe using a virtual environment.

python3 -m venv .venv
  • Using virtualenv.
virtualenv venv -p python3.6
  • Using virtualenvwrapper
mkvirtualenv textpipe -p python3.6
  • Install textpipe using pip.
pip install textpipe
  • Install the required packages using requirements.txt.
pip install -r requirements.txt

A note on spaCy download model requirement

While the requirements.txt file that comes with the package calls for spaCy's en_core_web_sm model, this can be changed depending on the model and language you require for your intended use. See spaCy.io's page on their different models for more information.

Usage example

>>> from textpipe import doc, pipeline
>>> sample_text = 'Sample text! <!DOCTYPE>'
>>> document = doc.Doc(sample_text)
>>> print(document.clean)
'Sample text!'
>>> print(document.language)
'en'
>>> print(document.nwords)
2

>>> pipe = pipeline.Pipeline(['CleanText', 'NWords'])
>>> print(pipe(sample_text))
{'CleanText': 'Sample text!', 'NWords': 3}

In order to extend the existing Textpipe operations with your own proprietary operations;

test_pipe = pipeline.Pipeline(['CleanText', 'NWords'])
def custom_op(doc, context=None, settings=None, **kwargs):
    return 1

custom_argument = {'argument' :1 }
test_pipe.register_operation('CUSTOM_STEP', custom_op)
test_pipe.steps.append(('CUSTOM_STEP', custom_argument ))

Contributing

See CONTRIBUTING for guidelines for contributors.

Changes

0.12.1

  • Bumps redis, tqdm, pyling

0.12.0

  • Bumps versions of many dependencies including textacy. Results for keyterm extraction changed.

0.11.9

  • Exposes arbitrary SpaCy ents properties

0.11.8

  • Exposes SpaCy's cats attribute

0.11.7

  • Bumps spaCy and redis versions

0.11.6

  • Fixes bug where gensim model is not cached in pipeline

0.11.5

  • Raise TextpipeMissingModelException instead of KeyError

0.11.4

  • Bumps spaCy and datasketch dependencies

0.11.1

  • Replaces codacy with pylint on CI
  • Fixes pylint issues

0.11.0

  • Adds wrapper around Gensim keyed vectors to construct document embeddings from Redis cache

0.9.0

  • Adds functionality to compute document embeddings using a Gensim word2vec model

0.8.6

  • Removes non standard utf chars before detecting language

0.8.5

  • Bump spaCy to 2.1.3

0.8.4

  • Fix broken install command

0.8.3

  • Fix broken install command

0.8.2

  • Fix copy-paste error in word vector aggregation (#118)

0.8.1

  • Fixes bugs in several operations that didn't accept kwargs

0.8.0

  • Bumps Spacy to 2.1

0.7.2

  • Pins Spacy and Pattern versions (with pinned lxml)

0.7.0

  • change operation's registry from list to dict
  • global pipeline data is available across operations via the context kwarg
  • load custom operations using register_operation in pipeline
  • custom steps (operations) with arguments
Owner
Textpipe
Textpipe
⚡ Automatically decrypt encryptions without knowing the key or cipher, decode encodings, and crack hashes ⚡

Translations 🇩🇪 DE 🇫🇷 FR 🇭🇺 HU 🇮🇩 ID 🇮🇹 IT 🇳🇱 NL 🇧🇷 PT-BR 🇷🇺 RU 🇨🇳 ZH ➡️ Documentation | Discord | Installation Guide ⬅️ Fully autom

11.2k Jan 05, 2023
Twitter-NLP-Analysis - Twitter Natural Language Processing Analysis

Twitter-NLP-Analysis Business Problem I got last @turk_politika 3000 tweets with

Çağrı Karadeniz 7 Mar 12, 2022
End-to-end image captioning with EfficientNet-b3 + LSTM with Attention

Image captioning End-to-end image captioning with EfficientNet-b3 + LSTM with Attention Model is seq2seq model. In the encoder pretrained EfficientNet

2 Feb 10, 2022
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 68 Jan 06, 2023
Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API

gpt3-instruct-sandbox Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API Description This project updates an existing GPT-3 san

312 Jan 03, 2023
BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents

BROS (BERT Relying On Spatiality) is a pre-trained language model focusing on text and layout for better key information extraction from documents. Given the OCR results of the document image, which

Clova AI Research 94 Dec 30, 2022
Predict the spans of toxic posts that were responsible for the toxic label of the posts

toxic-spans-detection An attempt at the SemEval 2021 Task 5: Toxic Spans Detection. The Toxic Spans Detection task of SemEval2021 required participant

Ilias Antonopoulos 3 Jul 24, 2022
Spooky Skelly For Python

_____ _ _____ _ _ _ | __| ___ ___ ___ | |_ _ _ | __|| |_ ___ | || | _ _ |__ || . || . || . || '

Kur0R1uka 1 Dec 23, 2021
Estimation of the CEFR complexity score of a given word, sentence or text.

NLP-Swedish … allows to estimate CEFR (Common European Framework of References) complexity score of a given word, sentence or text. CEFR scores come f

3 Apr 30, 2022
Understanding the Difficulty of Training Transformers

Admin Understanding the Difficulty of Training Transformers Guided by our analyses, we propose Adaptive Model Initialization (Admin), which successful

Liyuan Liu 300 Dec 29, 2022
GPT-3 command line interaction

Writer_unblock Straight-forward command line interfacing with GPT-3. Finding yourself stuck at a conceptual stage? Spinning your wheels needlessly on

Seth Nuzum 6 Feb 10, 2022
An easy to use Natural Language Processing library and framework for predicting, training, fine-tuning, and serving up state-of-the-art NLP models.

Welcome to AdaptNLP A high level framework and library for running, training, and deploying state-of-the-art Natural Language Processing (NLP) models

Novetta 407 Jan 03, 2023
A repository to run gpt-j-6b on low vram machines (4.2 gb minimum vram for 2000 token context, 3.5 gb for 1000 token context). Model loading takes 12gb free ram.

Basic-UI-for-GPT-J-6B-with-low-vram A repository to run GPT-J-6B on low vram systems by using both ram, vram and pinned memory. There seem to be some

90 Dec 25, 2022
A text file containing 479k English words for all your dictionary/word-based projects e.g: auto-completion / autosuggestion

List Of English Words A text file containing over 466k English words. While searching for a list of english words (for an auto-complete tutorial) I fo

dwyl 8.5k Jan 03, 2023
State of the art faster Natural Language Processing in Tensorflow 2.0 .

tf-transformers: faster and easier state-of-the-art NLP in TensorFlow 2.0 ****************************************************************************

74 Dec 05, 2022
Generate custom detailed survey paper with topic clustered sections and proper citations, from just a single query in just under 30 mins !!

Auto-Research A no-code utility to generate a detailed well-cited survey with topic clustered sections (draft paper format) and other interesting arti

Sidharth Pal 20 Dec 14, 2022
Linking data between GBIF, Biodiverse, and Open Tree of Life

GBIF-biodiverse-OpenTree Linking data between GBIF, Biodiverse, and Open Tree of Life The python scripts will rely on opentree and Dendropy. To set up

2 Oct 03, 2022
⚖️ A Statutory Article Retrieval Dataset in French.

A Statutory Article Retrieval Dataset in French This repository contains the Belgian Statutory Article Retrieval Dataset (BSARD), as well as the code

Maastricht Law & Tech Lab 19 Nov 17, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 03, 2023