Repository for the Demo of using DVC with PyCaret & MLOps (DVC Office Hours - 20th Jan, 2022)

Overview

Using DVC with PyCaret & FastAPI (Demo)

This repo contains all the resources for my demo explaining how to use DVC along with other interesting tools & frameworks like PyCaret & FastAPI for data & model versioning, experimentation with ML models & finally deploying these models quickly for inferencing.

This demo was presented at the DVC Office Hours on 20th Jan 2022.

Note: We will use Azure Blob Storage as our remote storage for this demo. To follow along, it is advised to either create an Azure account or use a different remote for storage.


Steps Followed for the Demo

0. Preliminaries

Create a virtual environment named dvc-demo & install required packages

python3 -m venv dvc-demo
source dvc-demo/bin/activate

pip install dvc[azure] pycaret fastapi uvicorn python-multipart

Initialize the repo with DVC tracking & create a data/ folder

mkdir dvc-pycaret-fastapi-demo
cd dvc-pycaret-fastapi-demo
git init
dvc init

git remote add origin https://github.com/tezansahu/dvc-pycaret-fastapi-demo.git

mkdir data

1. Tracking Data with DVC

We use the Heart Failure Prediction Dataset for this demo.

First, we download the heart.csv file & retain ~800 rows from this file in the data/ folder. (We will use the file with all the rows later - this is to simulate the change/increase in data that an ML workflow sees during its lifetime)

Track this data/heart.csv using DVC

dvc add data/heart.csv
git add data/heart.csv.dvc
git commit -m "add data - phase 1"

2. Setup the Remote for Storing Tracked Data & Models

  • Go to the Azure Portal & create a Storage Account (here, we name it dvcdemo) Creating a Storage Account on Azure

  • Within the storage account, create a Container (here, we name it demo20jan2022)

  • Obtain the Connection String from the storage account as follows: Obtaining the Connection String for a Storage Account on Azure

  • Install the Azure CLI from here & log into Azure from within the terminal using az login

Now, we store the tracked data in Azure:

dvc remote add -d storage azure://demo20jan2022/dvcstore
dvc remote modify --local storage connection_string <connection-string>

dvc push
git push origin main

3. ML Experimentation with PyCaret

Create the notebooks/ folders using mkdir notebook & download the notebooks/experimentation_with_pycaret.ipynb notebook from this repo into this notebooks/ folder.

Track this notebook with Git:

git add notebooks/
git commit -m "add ml training notebook"

Run all the cells mentioned under Phase 1 in the notebook. This involves basics of PyCaret:

  • Setting up a vanilla experiment with setup()
  • Comparing various classification models with compare_models()
  • Evaluating the preformance a model with evaluate_model()
  • Making predictions on the held-out eval data using predict_model()
  • Finalizing the model by training on the full training + eval data using finalize_model()
  • Saving the model pipeline using save_model()

This will create a model.pkl file in the models/ folder

4. Tracking Models with DVC

Now, we track the ML model using DVC & store it in our remote storage

dvc add models/model.pkl
git add models/model.pkl.dvc
git commit -m "add model - phase 1"

dvc push
git push origin main

5. Deploy the Model with FastAPI

First, delete the .dvc/cache/ & models/model.pkl (simulate production env). Then, pull the changes from the DVC remote storage.

dvc pull

Check that the model.pkl file is now present in models/ folder.

Now, create a server/ folder & place the main.py file in it after downloaidng the server/main.py file from this repo. This RESTful API server has 2 POST endpoints:

  • Inferencing on an individual record
  • Batch inferencing on a CSV file

We commit this to our repo:

git add server/
git commit -m "create basic fastapi server"

Now, we can run our local server on port 8000

cd server
uvicorn main:app --port=8000

Go to http://localhost:8000/docs & play with the endpoints present in the interactive documentation.

Swagger Interactive API Documentation for our Server

For the individual inference, you could use teh following data:

{
  "Age": 61,
  "Sex": "M",
  "ChestPainType": "ASY",
  "RestingBP": 148,
  "Cholesterol": 203,
  "FastingBS": 0,
  "RestingECG": "Normal",
  "MaxHR": 161,
  "ExerciseAngina": "N",
  "Oldpeak": 0,
  "ST_Slope": "Up"
}

6. Simulating the arrival of New Data

Now, we use the full heart.csv file to simulate the arrival of new data with time. We place it within data/ folder & upload it to DVC remote.

dvc add data/heart.csv
git add data/heart.csv.dvc
git commit -m "add data - phase 2"

dvc push
git push origin main

7. More Experimentation with PyCaret

Now, we run the experiment in Phase 2 of the notebooks/experimentation_with_pycaret.ipynb notebook. This involves:

  • Feature engineering while setting up teh experient
  • Fine-tuning of models with tune_model()
  • Creating an ensemble of models with blend_models()

The blended model is saved as models/modl.pkl

We upload it to our DVC remote.

dvc add models/model.pkl
git add models/model.pkl.dvc
git commit -m "add model - phase 2"

dvc push
git push origin main

8. Redeploying the New Model using FastAPI

Now, we again start the server (no code changes required, because the model file has same name) & perform inference.

cd server
uvicorn main:app --port=8000

With this, we demonstrate how DVC can be used in conjunction with PyCaret & FastAPI for iterating & experimenting efficiently with ML models & deploying them with minimal effort.


Additional Resources


Created with ❤️ by Tezan Sahu

Owner
Tezan Sahu
Data & Applied Scientist at Microsoft with a keen interest in NLP, Deep Learning, Blockchain Technologies & Data Analytics.
Tezan Sahu
Dead-simple mailer micro-service for static websites

Mailer Dead-simple mailer micro-service for static websites A free and open-source software alternative to contact form services such as FormSpree, to

Romain Clement 42 Dec 21, 2022
A FastAPI WebSocket application that makes use of ncellapp package by @hemantapkh

ncellFastAPI author: @awebisam Used FastAPI to create WS application. Ncellapp module by @hemantapkh NOTE: Not following best practices and, needs ref

Aashish Bhandari 7 Oct 01, 2021
Prometheus integration for Starlette.

Starlette Prometheus Introduction Prometheus integration for Starlette. Requirements Python 3.6+ Starlette 0.9+ Installation $ pip install starlette-p

José Antonio Perdiguero 229 Dec 21, 2022
FastAPI + PeeWee = <3

FastAPIwee FastAPI + PeeWee = 3 Using Python = 3.6 🐍 Installation pip install FastAPIwee 🎉 Documentation Documentation can be found here: https://

16 Aug 30, 2022
A minimal FastAPI implementation for Django !

Caution!!! This project is in early developing stage. So use it at you own risk. Bug reports / Fix PRs are welcomed. Installation pip install django-m

toki 23 Dec 24, 2022
Sample-fastapi - A sample app using Fastapi that you can deploy on App Platform

Getting Started We provide a sample app using Fastapi that you can deploy on App

Erhan BÜTE 2 Jan 17, 2022
FastAPI Socket.io with first-class documentation using AsyncAPI

fastapi-sio Socket.io FastAPI integration library with first-class documentation using AsyncAPI The usage of the library is very familiar to the exper

Marián Hlaváč 9 Jan 02, 2023
FastAPI interesting concepts.

fastapi_related_stuffs FastAPI interesting concepts. FastAPI version :- 0.70 Python3 version :- 3.9.x Steps Test Django Like settings export FASTAPI_S

Mohd Mujtaba 3 Feb 06, 2022
🚢 Docker images and utilities to power your Python APIs and help you ship faster. With support for Uvicorn, Gunicorn, Starlette, and FastAPI.

🚢 inboard 🐳 Docker images and utilities to power your Python APIs and help you ship faster. Description This repository provides Docker images and a

Brendon Smith 112 Dec 30, 2022
Fast, simple API for Apple firmwares.

Loyal Fast, Simple API for fetching Apple Firmwares. The API server is closed due to some reasons. Wait for v2 releases. Features Fetching Signed IPSW

11 Oct 28, 2022
Sample project showing reliable data ingestion application using FastAPI and dramatiq

Create and deploy a reliable data ingestion service with FastAPI, SQLModel and Dramatiq This is the source code for the data ingestion service explain

François Voron 31 Nov 30, 2022
Farlimit - FastAPI rate limit with python

FastAPIRateLimit Contributing is F&E (free&easy) Y Usage pip install farlimit N

omid 27 Oct 06, 2022
Reusable utilities for FastAPI

Reusable utilities for FastAPI Documentation: https://fastapi-utils.davidmontague.xyz Source Code: https://github.com/dmontagu/fastapi-utils FastAPI i

David Montague 1.3k Jan 04, 2023
FastAPI CRUD template using Deta Base

Deta Base FastAPI CRUD FastAPI CRUD template using Deta Base Setup Install the requirements for the CRUD: pip3 install -r requirements.txt Add your D

Sebastian Ponce 2 Dec 15, 2021
Complete Fundamental to Expert Codes of FastAPI for creating API's

FastAPI FastAPI is a modern, fast (high-performance), web framework for building APIs with Python 3 based on standard Python type hints. The key featu

Pranav Anand 1 Nov 28, 2021
Cube-CRUD is a simple example of a REST API CRUD in a context of rubik's cube review service.

Cube-CRUD is a simple example of a REST API CRUD in a context of rubik's cube review service. It uses Sqlalchemy ORM to manage the connection and database operations.

Sebastian Andrade 1 Dec 11, 2021
API Simples com python utilizando a biblioteca FastApi

api-fastapi-python API Simples com python utilizando a biblioteca FastApi Para rodar esse script são necessárias duas bibliotecas: Fastapi: Comando de

Leonardo Grava 0 Apr 29, 2022
High-performance Async REST API, in Python. FastAPI + GINO + Arq + Uvicorn (w/ Redis and PostgreSQL).

fastapi-gino-arq-uvicorn High-performance Async REST API, in Python. FastAPI + GINO + Arq + Uvicorn (powered by Redis & PostgreSQL). Contents Get Star

Leo Sussan 351 Jan 04, 2023
Full stack, modern web application generator. Using FastAPI, PostgreSQL as database, Docker, automatic HTTPS and more.

Full Stack FastAPI and PostgreSQL - Base Project Generator Generate a backend and frontend stack using Python, including interactive API documentation

Sebastián Ramírez 10.8k Jan 08, 2023
MQTT FastAPI Wrapper With Python

mqtt-fastapi-wrapper Quick start Create mosquitto.conf with the following content: ➜ /tmp cat mosquitto.conf persistence false allow_anonymous true

Vitalii Kulanov 3 May 09, 2022