The code submitted for the Analytics Vidhya Jobathon - February 2022

Overview

Introduction

On February 11th, 2022, Analytics Vidhya conducted a 3-day hackathon in data science. The top candidates had the chance to be selected by various participating companies across a multitude of roles, in the field of data science, analytics and business intelligence.

The objective of the hackathon was to develop a machine learning approach to predict the engagement between a user and a video. The training data already had an engagement score feature, which was a floating-point number between 0 and 5. This considerably simplified matters, as in recommender systems, calculating the engagement score is often more challenging than predicting them. The challenge, therefore, was to predict this score based on certain user related and video related features.

The list of features in the dataset is given below:

Variable Description
row_id Unique identifier of the row
user_id Unique identifier of the user
category_id Category of the video
video_id Unique identifier of the video
age Age of the user
gender Gender of the user (Male and Female)
profession Profession of the user (Student, Working Professional, Other)
followers No. of users following a particular category
views Total views of the videos present in the particular category
engagement_score Engagement score of the video for a user

Initial Ideas

Two main approaches were considered:

  • Regression Models : Since the engagement score was a continuous variable, one could use a regression model. There were several reasons that I did not use this method:

    1. The lack of features on which to build the model. The features "user_id", "category_id" and "video_id" were discrete features that would need to be encoded. Since each of these features had many unique values, using a simple One-Hot Encoding would not work due to the increase in the number of dimensions. I also considered using other categorical encoders, like the CatBoost encoder, however, I've found that most categorical encoders only do well if the target value is a categorical variable, not a continuous variable like the case here. This would leave us with only 5 features on which to make the model, which never felt enough. The 5 features also had very little scope for feature engineering, apart from some ideas on combining gender and profession and age and profession.
    2. The fact that traditional regression models have never done well as recommender systems. The now famous Netflix challenge clearly showed the advantage collaborative filtering methods had over simple regressor models.
  • Collaborative Filtering : This was the option I eventually went with. There was enough evidence to see that Collaborative Filtering was in almost all cases better than regression models. There are many different ways of implementing collaborative filtering, of which I finally decided to use the Matrix Factorization method (SVD).

Final Model

The first few runs of collaborative filtering were not very successful, with a low r2 score on the test set. However, running a Grid Search over the 3 main hyperparameters – the number of factors, the number of epochs and the learning rate, soon gave the optimal SVD. The final hyperparameters were:

  • Number of Factors: 100
  • Number of Epochs: 500,
  • Learning Rate: 0.05

The r2 score on the test set at this point was 0.506, which took me to the top of the leaderboard.

The next step was to try to improve the model further. I decided to model the errors of the SVD model, so that the predictions of the SVD could be further adjusted by the error estimates. After trying a few different models, I selected the Linear Regression model to predict the errors.

To generate the error, the SVD model first had to run on a subset of the training set, so that the model could predict the error on the validation set. On this validation set, the Linear Regression was trained. The SVD was run on 95% of the training set, therefore, the regression was done on only 5% of the entire training set. The steps in the process were:

  1. Get the engagement score predictions using the SVD model for the validation set.
  2. Calculate the error.
  3. Train the model on this validation set, using the features – "age", "followers", "views", "gender", "profession" and "initial_estimate". The target variable was the error.
  4. Finally, run both models on the actual test set, first the SVD, then the Linear Regression.
  5. The final prediction is the difference between the initial estimates and the weighted error estimates. The error estimates were given a weight of 5%, since that was the proportion of data on which the Linear Regression model was trained.
  6. There could be scenarios of the final prediction going above 5 or below 0. In such cases, adjust the prediction to either 5 or 0.

The final r2 score was 0.532, an increase of 2.9 points.

Ideas for Improvement

There are many ways I feel the model can be further improved. Some of them are:

  1. Choosing the Correct Regression Model to Predict the Error : It was quite unexpected that a weak learner like Linear Regression did better than stronger models like Random Forest and XGBoost. I feel that the main reason for this is that dataset used to train these regressors were quite small, only 5% of the entire training set. While the linear regression model worked well with such a small dataset, the more complicated models did not.
  2. Setting the Correct Subset for the SVD : After trying a few different values, the SVD subset was set at 95% while the error subset set at only 5%. The reason for setting such a high percentage was that the SVD was the more powerful algorithm and I wanted that to be as accurate as possible. However, this severely compromised the error predictor. Finding the perfect balance here could improve the model performance.
  3. Selecting the Correct Weights for the Final Prediction : The final prediction was the difference between the initial estimate and the weighted error estimate. Further analysis is needed to get the most optimum weights. Ideally, the weights should not be needed at all.
  4. Feature Engineering : The error estimator had no feature engineering at all, in fact, I removed the feature "category_id" as well. Adding new features could potentially help in improving the error estimates, however, the benefits would be low, as it accounts for only 5% of the final prediction.
Tool to generate wrappers for Linux libraries allowing for dlopen()ing them without writing any boilerplate

Dynload wrapper This program will generate a wrapper to make it easy to dlopen() shared objects on Linux without writing a ton of boilerplate code. Th

Hein-Pieter van Braam 25 Oct 24, 2022
Stop ask your soraka to ult you, just ult yourself

Lollo's auto-ultimate script Are you tired of your low elo friend who can't ult you with soraka when you ask for it? Use Useless Support and just ult

9 Oct 20, 2022
A free website that keeps the people informed about housing and evictions.

Eviction Tracker Currently helping verify detainer warrant data for middle Tennessee - via Middle TN DSA - Red Door Collective Features Presents data

Red Door Collective 7 Dec 14, 2022
Hello, Welcome to this repo. don't forget to read guidelines in readme.md

Hacktoberfest_2021 If you looking for your first contribution, we are here to help. Just create a simple program using any language you like in our fo

Wafa Rifqi Anafin 117 Dec 14, 2022
ThnoolBox - A thneed is a multi-use versatile object

ThnoolBox Have you ever wanted a collection of bodged desktop apps that are Lorax themed ? No ? Sucks to suck I guess Apps & their downsides CalculaTh

pocoyo 1 Jan 21, 2022
Mnemosyne: efficient learning with powerful digital flash-cards.

Mnemosyne: Optimized Flashcards and Research Project Mnemosyne is: a free, open-source, spaced-repetition flashcard program that helps you learn as ef

359 Dec 24, 2022
Tools, guides, and resources for blockchain analysts to interface with data on the Ergo platform.

Ergo Intelligence Objective Provide a suite of easy-to-use toolkits, guides, and resources for blockchain analysts and data scientists to quickly unde

Chris 5 Mar 15, 2022
navigation_commander is a ROS package to command the robot to navigate autonomously to each table for food delivery inside a hotel.

navigation_commander navigation_commander is a ROS package to command the robot to navigate autonomously to each table for food delivery inside a hote

ALEENA LENTIN 9 Nov 08, 2021
Python calculator made with tkinter package

Python-Calculator Python calculator made with tkinter package. works both on Visual Studio Code Or Any Other Ide Or You Just Copy paste The Same Thing

Pro_Gamer_711 1 Nov 11, 2021
Pyhexdmp - Python hex dump module

Pyhexdmp - Python hex dump module

25 Oct 23, 2022
This repository contains all the data analytics projects that I've worked on in python.

93_Python_Data_Analytics_Projects This repository contains all the data analytics projects that I've worked on in python. No. Name 01 001_Cervical_Can

Milaan Parmar / Милан пармар / _米兰 帕尔马 267 Jan 06, 2023
Exercicios de Python do Curso Em Video, apresentado por Gustavo Guanabara.

Exercicios Curso Em Video de Python Exercicios de Python do Curso Em Video, apresentado por Gustavo Guanabara. OBS.: Na data de postagem deste repo já

Lorenzo Ribeiro Varalo 0 Oct 21, 2021
Nag0mi ctf problem 2021 writeup

Nag0mi ctf problem 2021 writeup

3 Apr 04, 2022
Program Input Nilai Mahasiswa Menggunakan Fungsi

PROGRAM INPUT NILAI MAHASISWA MENGGUNAKAN FUNGSI Nama : Maulana Reza Badrudin Nim : 312110510 Matkul : Bahas Pemograman DESKRIPSI Deklarasi dicti

Maulana Reza Badrudin 1 Jan 05, 2022
Быстрый локальный старт

Быстрый локальный старт

Anton Ogorodnikov 1 Sep 28, 2021
Open Source Management System for Botanic Garden Collections.

BotGard 3.0 Open Source Management System for Botanic Garden Collections built and maintained by netzkolchose.de in cooperation with the Botanical Gar

netzkolchose.de 1 Dec 15, 2021
An application for automation of the mining function in the game Alienworlds.IO

alienautomation A Python script made to automate the tidious job of mining on AlienWorlds This script: Automatically opens the browser Automatically l

anonieXdev 42 Dec 03, 2022
A custom advent of code I am completing

advent-of-code-custom A custom advent of code I am doing in python. The link to the problems I am solving is here: https://github.com/seldoncode/Adven

Rocio PV 2 Dec 11, 2021
- Auto join teams teams ( from calendar invite )

Auto Join Teams Meetings Requirements: Python 3.7 or higher Latest Google Chrome This script automatically logins to your account and joins the meetin

Prajin Khadka 10 Aug 20, 2022
Collapse a set of redundant kmers to use IUPAC degenerate bases

kmer-collapse Collapse a set of redundant kmers to use IUPAC degenerate bases Overview Given an input set of kmers, find the smallest set of kmers tha

Alex Reynolds 3 Jan 06, 2022