Scalable Multi-Agent Reinforcement Learning

Overview

Scalable Multi-Agent Reinforcement Learning

1. Featured algorithms:

  • Value Function Factorization with Variable Agent Sub-Teams (VAST) [1]

2. Implemented domains

All available domains are listed in the table below. The labels are used for the commands below (in 5. and 6.).

Domain Label Description
Warehouse[4] Warehouse-4 Warehouse domain with 4 agents in a 5x3 grid.
Warehouse[8] Warehouse-8 Warehouse domain with 8 agents in a 5x5 grid.
Warehouse[16] Warehouse-16 Warehouse domain with 16 agents in a 9x13 grid.
Battle[20] Battle-20 Battle domain with armies of 20 agents each in a 10x10 grid.
Battle[40] Battle-40 Battle domain with armies of 40 agents each in a 14x14 grid.
Battle[80] Battle-80 Battle domain with armies of 80 agents each in a 18x18 grid.
GaussianSqueeze[200] GaussianSqueeze-200 Gaussian squeeze domain 200 agents.
GaussianSqueeze[400] GaussianSqueeze-400 Gaussian squeeze domain 400 agents.
GaussianSqueeze[800] GaussianSqueeze-800 Gaussian squeeze domain 800 agents.

3. Implemented MARL algorithms

The reported MARL algorithms are listed in the tables below. The labels are used for the commands below (in 5. and 6.).

Baseline Label
IL IL
QMIX QMIX
QTRAN QTRAN
VAST(VFF operator) Label
VAST(IL) VAST-IL
VAST(VDN) VAST-VDN
VAST(QMIX) VAST-QMIX
VAST(QTRAN) VAST-QTRAN
VAST(assignment strategy) Label
VAST(Random) VAST-QTRAN-RANDOM
VAST(Fixed) VAST-QTRAN-FIXED
VAST(Spatial) VAST-QTRAN-SPATIAL
VAST(MetaGrad) VAST-QTRAN

4. Experiment parameters

The experiment parameters like the learning rate for training (params["learning_rate"]) or the number of episodes per epoch (params["episodes_per_epoch"]) are specified in settings.py. All other hyperparameters are set in the corresponding python modules in the package vast/controllers, where all final values as listed in the technical appendix are specified as default value.

All hyperparameters can be adjusted by setting their values via the params dictionary in settings.py.

5. Training

To train a MARL algorithm M (see tables in 3.) in domain D (see table in 2.) with compactness factor eta, run the following command:

python train.py M D eta

This command will create a folder with the name pattern output/N-agents_domain-D_subteams-S_M_datetime which contains the trained models (depending on the MARL algorithm).

train.sh is an example script for running all settings as specified in the paper.

6. Plotting

To generate plots for a particular domain D and evaluation mode E as presented in the paper, run the following command:

python plot.py M E

The command will load and display all the data of completed training runs that are stored in the folder which is specified in params["output_folder"] (see settings.py).

The evaluation mode E are specified in the table below:

Evaluation mode Label
VFF operator comparison F
State-of-the-art comparison S
Assignment strategy comparison A
Division diversity comparison D

7. Rendering

To render episodes of the Warehouse[N] or Battle[N] domain, set params["render_pygame"]=True in settings.py.

8. References

  • [1] T. Phan et al., "VAST: Value Function Factorization with Variable Agent Sub-Teams", in NeurIPS 2021
Official implementation of the paper ``Unifying Nonlocal Blocks for Neural Networks'' (ICCV'21)

Spectral Nonlocal Block Overview Official implementation of the paper: Unifying Nonlocal Blocks for Neural Networks (ICCV'21) Spectral View of Nonloca

91 Dec 14, 2022
Level Based Customer Segmentation

level_based_customer_segmentation Level Based Customer Segmentation Persona Veri Seti kullanılarak müşteri segmentasyonu yapılmıştır. KOLONLAR : PRICE

Buse Yıldırım 6 Dec 21, 2021
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022
This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search"

InvariantAncestrySearch This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search

Phillip Bredahl Mogensen 0 Feb 02, 2022
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
Json2Xml tool will help you convert from json COCO format to VOC xml format in Object Detection Problem.

JSON 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Json2Xml t

Nguyễn Trường Lâu 6 Aug 22, 2022
A containerized REST API around OpenAI's CLIP model.

OpenAI's CLIP — REST API This is a container wrapping OpenAI's CLIP model in a RESTful interface. Running the container locally First, build the conta

Santiago Valdarrama 48 Nov 06, 2022
[ICCV' 21] "Unsupervised Point Cloud Pre-training via Occlusion Completion"

OcCo: Unsupervised Point Cloud Pre-training via Occlusion Completion This repository is the official implementation of paper: "Unsupervised Point Clou

Hanchen 204 Dec 24, 2022
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines"

MangaLineExtraction_PyTorch The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines" Usage model_torch.py [sourc

Miaomiao Li 82 Jan 02, 2023
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
10x faster matrix and vector operations

Bolt is an algorithm for compressing vectors of real-valued data and running mathematical operations directly on the compressed representations. If yo

2.3k Jan 09, 2023
Automatic Attendance marker for LMS Practice School Division, BITS Pilani

LMS Attendance Marker Automatic script for lazy people to mark attendance on LMS for Practice School 1. Setup Add your LMS credentials and time slot t

Nihar Bansal 3 Jun 12, 2021
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

El Bruno 3 Mar 30, 2022
Website which uses Deep Learning to generate horror stories.

Creepypasta - Text Generator Website which uses Deep Learning to generate horror stories. View Demo · View Website Repo · Report Bug · Request Feature

Dhairya Sharma 5 Oct 14, 2022
Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL) This repository contains all source code used to generate the results in the article "

Charlotte Loh 3 Jul 23, 2022