Paper and Code for "Curriculum Learning by Optimizing Learning Dynamics" (AISTATS 2021)

Related tags

DocumentationDoCL
Overview

Curriculum Learning by Optimizing Learning Dynamics (DoCL)

AISTATS 2021 paper:

Title: Curriculum Learning by Optimizing Learning Dynamics [pdf] [appendix] [slides]
Authors: Tianyi Zhou, Shengjie Wang, Jeff A. Bilmes
Institute: University of Washington, Seattle

@inproceedings{
    zhou2020docl,
    title={Curriculum Learning by Optimizing Learning Dynamics},
    author={Tianyi Zhou and Shengjie Wang and Jeff A. Bilmes},
    booktitle={Proceedings of The 24th International Conference on Artificial Intelligence and Statistics (AISTATS)},
    year={2021},
}

Abstract
We study a novel curriculum learning scheme where in each round, samples are selected to achieve the greatest progress and fastest learning speed towards the ground-truth on all available samples. Inspired by an analysis of optimization dynamics under gradient flow for both regression and classification, the problem reduces to selecting training samples by a score computed from samples’ residual and linear temporal dynamics. It encourages the model to focus on the samples at learning frontier, i.e., those with large loss but fast learning speed. The scores in discrete time can be estimated via already-available byproducts of training, and thus require a negligible amount of extra computation. We discuss the properties and potential advantages of the proposed dynamics optimization via current deep learning theory and empirical study. By integrating it with cyclical training of neural networks, we introduce "dynamics-optimized curriculum learning (DoCL)", which selects the training set for each step by weighted sampling based on the scores. On nine different datasets, DoCL significantly outperforms random mini-batch SGD and recent curriculum learning methods both in terms of efficiency and final performance.

Usage

Prerequisites

Instructions

  • For now, we keep all the DoCL code in docl.py. It supports multiple datasets and models. You can add your own options.
  • Example scripts to run DoCL on CIFAR10/100 for training WideResNet-28-10 can be found in docl_cifar.sh.
  • We apply multiple episodes of training epochs, each following a cosine annealing learning rate decreasing from --lr_max to --lr_min. The episodes can be set by epoch numbers, for example, --epochs 300 --schedule 0 5 10 15 20 30 40 60 90 140 210 300.
  • DoCL reduces the selected subset's size over the training episodes, starting from n (the total number of training samples). Set how to reduce the size by --k 1.0 --dk 0.1 --mk 0.3 for example, which starts from a subset size (k * n) and multiplies it by (1 - dk) until reaching (mk * n).
  • To further reduce the subset in earlier epochs less than n and save more computation, add --use_centrality to further prune the DoCL-selected subset to a few diverse and representative samples according to samples' centrality (defined on pairwise similarity between samples). Set the corresponding selection ratio and how you want to change the ratio every episode, for example, --select_ratio 0.5 --select_ratio_rate 1.1 will further reduce the DoCL-selected subset to be its half size in the first non-warm-starting episode and then multiply this ratio by 1.1 for every future episode until selection_ratio = 1.
  • Centrality is an alternative of the facility location function in the paper in order to encourage diversity. The latter requires an external submodular maximization library and extra computation, compared to the centrality used here. We may add the option of submodular maximization in the future, but the centrality performs good enough on most tested tasks.
  • Self-supervised learning may help in some scenarios. Two types of self-supervision regularizations are supported, i.e., --consistency and --contrastive.
  • If one is interested to try DoCL on noisy-label learning (though not the focus of the paper), add --use_noisylabel and specify the noisy type and ratio using --label_noise_type and --label_noise_rate.

License
This project is licensed under the terms of the MIT license.

Owner
Tianyi Zhou
Tianyi Zhou
Template repo to quickly make a tested and documented GitHub action in Python with Poetry

Python + Poetry GitHub Action Template Getting started from the template Rename the src/action_python_poetry package. Globally replace instances of ac

Kevin Duff 89 Dec 25, 2022
Sphinx theme for readthedocs.org

Read the Docs Sphinx Theme This Sphinx theme was designed to provide a great reader experience for documentation users on both desktop and mobile devi

Read the Docs 4.3k Dec 31, 2022
Python Deep Dive Course - Accompanying Materials

Python Deep Dive Various Jupyter notebooks and Python sources associated with my Udemy Python 3 Deep Dive course series: Part 1: Mainly functional pro

Fred Baptiste 1.1k Dec 30, 2022
swagger-codegen contains a template-driven engine to generate documentation, API clients and server stubs in different languages by parsing your OpenAPI / Swagger definition.

Master (2.4.25-SNAPSHOT): 3.0.31-SNAPSHOT: Maven Central ⭐ ⭐ ⭐ If you would like to contribute, please refer to guidelines and a list of open tasks. ⭐

Swagger 15.2k Dec 31, 2022
Sms Bomber, Tool Encryptor

ɴᴏʙɪᴛᴀシ︎ ғᴏʀ ᴀɴʏ ʜᴇʟᴘシ︎ Install pkg install git -y pkg install python -y pip install requests git clone https://github.com/AK27HVAU/akash Run cd Akash

ɴᴏʙɪᴛᴀシ︎ 4 May 23, 2022
30 days of Python programming challenge is a step-by-step guide to learn the Python programming language in 30 days

30 days of Python programming challenge is a step-by-step guide to learn the Python programming language in 30 days. This challenge may take more than100 days, follow your own pace.

Asabeneh 17.7k Jan 07, 2023
JTEX is a command line tool (CLI) for rendering LaTeX documents from jinja-style templates.

JTEX JTEX is a command line tool (CLI) for rendering LaTeX documents from jinja-style templates. This package uses Jinja2 as the template engine with

Curvenote 15 Dec 21, 2022
A `:github:` role for Sphinx

sphinx-github-role A github role for Sphinx. Usage Basic usage MyST: :caption: index.md See {github}`astrojuanlu/sphinx-github-role#1`. reStructuredT

Juan Luis Cano Rodríguez 4 Nov 22, 2022
Some custom tweaks to the results produced by pytkdocs.

pytkdocs_tweaks Some custom tweaks for pytkdocs. For use as part of the documentation-generation-for-Python stack that comprises mkdocs, mkdocs-materi

Patrick Kidger 4 Nov 24, 2022
Reproducible Data Science at Scale!

Pachyderm: The Data Foundation for Machine Learning Pachyderm provides the data layer that allows machine learning teams to productionize and scale th

Pachyderm 5.7k Dec 29, 2022
Types that make coding in Python quick and safe.

Type[T] Types that make coding in Python quick and safe. Type[T] works best with Python 3.6 or later. Prior to 3.6, object types must use comment type

Contains 17 Aug 01, 2022
This program has been coded to allow the user to rename all the files in the entered folder.

Bulk_File_Renamer This program has been coded to allow the user to rename all the files in the entered folder. The only required package is "termcolor

1 Jan 06, 2022
Dev Centric Tools for Mkdocs Based Documentation

docutools MkDocs Documentation Tools For Developers This repo is providing a set of plugins for mkdocs material compatible documentation. It is meant

Axiros GmbH 14 Sep 10, 2022
Collections of Beautiful Latex Snippets

HandyLatex Collections of Beautiful Latex Snippets Table 👉 Succinct table with bold separation line and gray text %################## Dependencies ##

Xintao 15 Apr 11, 2022
Materi workshop "Light up your Python!" Himpunan Mahasiswa Sistem Informasi Fakultas Ilmu Komputer Universitas Singaperbangsa Karawang, 4 September 2021 (Online via Zoom).

Workshop Python UNSIKA 2021 Materi workshop "Light up your Python!" Himpunan Mahasiswa Sistem Informasi Fakultas Ilmu Komputer Universitas Singaperban

Eka Putra 20 Mar 24, 2022
Course materials for: Geospatial Data Science

Course materials for: Geospatial Data Science These course materials cover the lectures for the course held for the first time in spring 2022 at IT Un

Michael Szell 266 Jan 02, 2023
Fun interactive program to sort a list :)

LHD-Build-Sort-a-list Fun interactive program to sort a list :) Inspiration LHD Build Write a script to sort a list. What it does It is a menu driven

Ananya Gupta 1 Jan 15, 2022
Markdown documentation generator from Google docstrings

mkgendocs A Python package for automatically generating documentation pages in markdown for Python source files by parsing Google style docstring. The

Davide Nunes 44 Dec 18, 2022
A Sublime Text plugin to select a default syntax dialect

Default Syntax Chooser This Sublime Text 4 plugin provides the set_default_syntax_dialect command. This command manipulates a syntax file (e.g.: SQL.s

3 Jan 14, 2022
Cleaner script to normalize knock's output EPUBs

clean-epub The excellent knock application by Benton Edmondson outputs EPUBs that seem to be DRM-free. However, if you run the application twice on th

2 Dec 16, 2022