The official implementation of Equalization Loss v1 & v2 (CVPR 2020, 2021) based on MMDetection.

Related tags

Deep Learningeqlv2
Overview

The Equalization Losses for Long-tailed Object Detection and Instance Segmentation

This repo is official implementation CVPR 2021 paper: Equalization Loss v2: A New Gradient Balance Approach for Long-tailed Object Detection and CVPR 2020 paper: Equalization loss for long-tailed object recognition

Besides the equalization losses, this repo also includes some other algorithms:

  • BAGS (Balance GroupSoftmax)
  • cRT (classifier re-training)
  • LWS (Learnable Weight Scaling)

Requirements

We test our codes on MMDetection V2.3, other versions should also be ok.

Prepare LVIS Dataset

for images

LVIS uses same images as COCO's, so you need to donwload COCO dataset at folder ($COCO), and link those train, val under folder lvis($LVIS).

mkdir -p data/lvis
ln -s $COCO/train $LVIS
ln -s $COCO/val $LVIS
ln -s $COCO/test $LVIS

for annotations

Download the annotations from lvis webset

cd $LVIS
mkdir annotations

then places the annotations at folder ($LVIS/annotations)

Finally you will have the file structure like below:

data
  ├── lvis
  |   ├── annotations
  │   │   │   ├── lvis_v1_val.json
  │   │   │   ├── lvis_v1_train.json
  │   ├── train2017
  │   │   ├── 000000004134.png
  │   │   ├── 000000031817.png
  │   │   ├── ......
  │   ├── val2017
  │   ├── test2017

for API

The official lvis-api and mmlvis can lead to some bugs of multiprocess. See issue

So you can install this LVIS API from my modified repo.

pip install git+https://github.com/tztztztztz/lvis-api.git

Testing with pretrain_models

# ./tools/dist_test.sh ${CONFIG} ${CHECKPOINT} ${GPU_NUM} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]
./tools/dist_test.sh configs/eqlv2/eql_r50_8x2_1x.py data/pretrain_models/eql_r50_8x2_1x.pth 8 --out results.pkl --eval bbox segm

Training

# ./tools/dist_train.sh ${CONFIG} ${GPU_NUM}
./tools/dist_train.sh ./configs/end2end/eql_r50_8x2_1x.py 8 

Once you finished the training, you will get the evaluation metric like this:

bbox AP

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.242
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=300 catIds=all] = 0.401
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=300 catIds=all] = 0.254
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.181
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.317
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.367
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.135
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.225
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.308
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.331
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.223
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.417
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.497
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.197
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.308
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.415

mask AP

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.237
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=300 catIds=all] = 0.372
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=300 catIds=all] = 0.251
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.169
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.316
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.370
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.149
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.228
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.286
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.326
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.210
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.415
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.495
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.213
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.313
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.389

We place ours configs file in ./configs/

  • ./configs/end2end: eqlv2 and other end2end methods
  • ./configs/decouple decoupled-based methods

How to train decouple training methods.

  1. Train the baseline model (or EQL v2).
  2. Prepare the pretrained checkpoint
  # suppose you've trained baseline model
  cd r50_1x
  python ../tools/ckpt_surgery.py --ckpt-path epoch_12.pth --method remove
  # if you want to train LWS, you should choose method 'reset'
  1. Start training with configs
  # ./tools/dist_train.sh ./configs/decouple/bags_r50_8x2_1x.py 8
  # ./tools/dist_train.sh ./configs/decouple/lws_r50_8x2_1x.py 8
  ./tools/dist_train.sh ./configs/decouple/crt_r50_8x2_1x.py 8

Pretrained Models on LVIS

Methods end2end AP APr APc APf pretrained_model
Baseline 16.1 0.0 12.0 27.4 model
EQL 18.6 2.1 17.4 27.2 model
RFS 22.2 11.5 21.2 28.0 model
LWS × 17.0 2.0 13.5 27.4 model
cRT × 22.1 11.9 20.2 29.0 model
BAGS × 23.1 13.1 22.5 28.2 model
EQLv2 23.7 14.9 22.8 28.6 model

How to train EQLv2 on OpenImages

1. Download the data

Download openimages v5 images from link, The folder will be

openimages
    ├── train
    ├── validation
    ├── test

Download the annotations for Challenge 2019 from link, The folder will be

annotations
    ├── challenge-2019-classes-description-500.csv
    ├── challenge-2019-train-detection-human-imagelabels.csv
    ├── challenge-2019-train-detection-bbox.csv
    ├── challenge-2019-validation-detection-bbox.csv
    ├── challenge-2019-validation-detection-human-imagelabels.csv
    ├── ...

2. Convert the .csv to coco-like .json file.

cd tools/openimages2coco/
python convert_annotations.py -p PATH_TO_OPENIMAGES --version challenge_2019 --task bbox 

You may need to donwload the data directory from https://github.com/bethgelab/openimages2coco/tree/master/data and place it at $project_dir/tools/openimages2coco/

3. Train models

  ./tools/dist_train.sh ./configs/openimages/eqlv2_r50_fpn_8x2_2x.py 8

Other configs can be found at ./configs/openimages/

4. Inference and output the json results file

./tools/dist_test.sh ./configs/openimages/eqlv2_r50_fpn_8x2_2x.py openimage_eqlv2_2x/epoch_1.pth 8 --format-only --options "jsonfile_prefix=openimage_eqlv2_2x/results"" 

Then you will get results.bbox.json under folder openimage_eqlv2

5. Convert coco-like json result file to openimage-like csv results file

cd $project_dir/tools/openimages2coco/
python convert_predictions.py -p ../../openimage_eqlv2/results.bbox.json --subset validation

Then you will get results.bbox.csv under folder openimage_eqlv2

6. Evaluate results file using official API

Please refer this link

After this, you will see something like this.

OpenImagesDetectionChallenge_Precision/[email protected],0.5263230244227198                                                                                                                     OpenImagesDetectionChallenge_PerformanceByCategory/[email protected]/b'/m/061hd_',0.4198356678732905                                                                                             OpenImagesDetectionChallenge_PerformanceByCategory/[email protected]/b'/m/06m11',0.40262261023434986                                                                                             OpenImagesDetectionChallenge_PerformanceByCategory/[email protected]/b'/m/03120',0.5694096972722996                                                                                              OpenImagesDetectionChallenge_PerformanceByCategory/[email protected]/b'/m/01kb5b',0.20532245532245533                                                                                            OpenImagesDetectionChallenge_PerformanceByCategory/[email protected]/b'/m/0120dh',0.7934685035604202                                                                                             OpenImagesDetectionChallenge_PerformanceByCategory/[email protected]/b'/m/0dv5r',0.7029194449221794                                                                                              OpenImagesDetectionChallenge_PerformanceByCategory/[email protected]/b'/m/0jbk',0.5959245714028935

7. Parse the AP file and output the grouped AP

cd $project_dir

PYTHONPATH=./:$PYTHONPATH python tools/parse_openimage_metric.py --file openimage_eqlv2_2x/metric

And you will get:

mAP 0.5263230244227198
mAP0: 0.4857693606436219
mAP1: 0.52047262478471
mAP2: 0.5304580597832517
mAP3: 0.5348747991854581
mAP4: 0.5588236678031849

Main Results on OpenImages

Methods AP AP1 AP2 AP3 AP4 AP5
Faster-R50 43.1 26.3 42.5 45.2 48.2 52.6
EQL 45.3 32.7 44.6 47.3 48.3 53.1
EQLv2 52.6 48.6 52.0 53.0 53.4 55.8
Faster-R101 46.0 29.2 45.5 49.3 50.9 54.7
EQL 48.0 36.1 47.2 50.5 51.0 55.0
EQLv2 55.1 51.0 55.2 56.6 55.6 57.5

Citation

If you use the equalization losses, please cite our papers.

@article{tan2020eqlv2,
  title={Equalization Loss v2: A New Gradient Balance Approach for Long-tailed Object Detection},
  author={Tan, Jingru and Lu, Xin and Zhang, Gang and Yin, Changqing and Li, Quanquan},
  journal={arXiv preprint arXiv:2012.08548},
  year={2020}
}
@inproceedings{tan2020equalization,
  title={Equalization loss for long-tailed object recognition},
  author={Tan, Jingru and Wang, Changbao and Li, Buyu and Li, Quanquan and Ouyang, Wanli and Yin, Changqing and Yan, Junjie},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={11662--11671},
  year={2020}
}

Credits

The code for converting openimage to LVIS is from this repo.

Owner
Jingru Tan
Jingru Tan
Object recognition using Azure Custom Vision AI and Azure Functions

Step by Step on how to create an object recognition model using Custom Vision, export the model and run the model in an Azure Function

El Bruno 11 Jul 08, 2022
Prefix-Tuning: Optimizing Continuous Prompts for Generation

Prefix Tuning Files: . ├── gpt2 # Code for GPT2 style autoregressive LM │ ├── train_e2e.py # high-level script

530 Jan 04, 2023
This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision"

RUAS This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision" A prelimin

Vision & Optimization Group (VOG) 2 May 05, 2022
Explaining neural decisions contrastively to alternative decisions.

Contrastive Explanations for Model Interpretability This is the repository for the paper "Contrastive Explanations for Model Interpretability", about

AI2 16 Oct 16, 2022
Starter kit for getting started in the Music Demixing Challenge.

Music Demixing Challenge - Starter Kit 👉 Challenge page This repository is the Music Demixing Challenge Submission template and Starter kit! Clone th

AIcrowd 106 Dec 20, 2022
Config files for my GitHub profile.

Canalyst Candas Data Science Library Name Canalyst Candas Description Built by a former PM / analyst to give anyone with a little bit of Python knowle

Canalyst Candas 13 Jun 24, 2022
Implementation of Google Brain's WaveGrad high-fidelity vocoder

WaveGrad Implementation (PyTorch) of Google Brain's high-fidelity WaveGrad vocoder (paper). First implementation on GitHub with high-quality generatio

Ivan Vovk 363 Dec 27, 2022
DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download

Bubbliiiing 31 Nov 25, 2022
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Yuki M. Asano 12 Dec 19, 2022
PyTorch implementation of MLP-Mixer

PyTorch implementation of MLP-Mixer MLP-Mixer: an all-MLP architecture composed of alternate token-mixing and channel-mixing operations. The token-mix

Duo Li 33 Nov 27, 2022
Half Instance Normalization Network for Image Restoration

HINet Half Instance Normalization Network for Image Restoration, based on https://github.com/megvii-model/HINet. Dependencies NumPy PyTorch, preferabl

Holy Wu 4 Jun 06, 2022
Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated

Arun 92 Dec 03, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces

JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces JAXMAPP is a JAX-based library for multi-agent path planning (MAPP) in c

OMRON SINIC X 24 Dec 28, 2022
Diffusion Probabilistic Models for 3D Point Cloud Generation (CVPR 2021)

Diffusion Probabilistic Models for 3D Point Cloud Generation [Paper] [Code] The official code repository for our CVPR 2021 paper "Diffusion Probabilis

Shitong Luo 323 Jan 05, 2023
Subpopulation detection in high-dimensional single-cell data

PhenoGraph for Python3 PhenoGraph is a clustering method designed for high-dimensional single-cell data. It works by creating a graph ("network") repr

Dana Pe'er Lab 42 Sep 05, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

LinpengPan 5 Nov 09, 2022
Real-CUGAN - Real Cascade U-Nets for Anime Image Super Resolution

Real Cascade U-Nets for Anime Image Super Resolution 中文 | English 🔥 Real-CUGAN

tarsin 111 Dec 28, 2022
[ WSDM '22 ] On Sampling Collaborative Filtering Datasets

On Sampling Collaborative Filtering Datasets This repository contains the implementation of many popular sampling strategies, along with various expli

Noveen Sachdeva 17 Dec 08, 2022