GSoC'2021 | TensorFlow implementation of Wav2Vec2

Overview

GSoC

This repository presents an implementation of the Wav2Vec2 model [1] in TensorFlow 2.0 as a part of Google Summer of Code.

For a quick demo, please check out this. Final report of the project can be found here.

Notebooks

The repository comes with shiny Colab Notebooks. Below you can find a list of them. Spin them up and don't forget to have fun!

Notebook Description
Open In Colab This notebook gives you a template to fine-tune a pre-trained Wav2Vec2 SavedModel
Open In Colab This notebook demonstrates conversion of TF Wav2Vec2 model to ONNX and compares the latency of ONNX exported model & TF model on CPU
Open In Colab This notebook demonstrates Wav2Vec2 evaluation (without any padding) on LibriSpeech data
Open In Colab This notebook demonstrates Wav2Vec2 SavedModel evaluation (with constant padding upto 246000 length) on LibriSpeech data
Open In Colab This notebook shows a small demo of how to use Wav2Vec2 for inference for ASR task

Checkpoints

Below is a summary of checkpoints obtained during the project:

🤗 Hub Checkpoint TFHub SavedModel Description
gsoc-wav2vec2 wav2vec2 This checkpoint is TensorFlow's equivalent of pre-trained Wav2Vec2 by Facebook. PyTorch weights are converted into TensorFlow using convert_torch_to_tf.py
gsoc-wav2vec2-960h wav2vec2-960h This checkpoint is TensorFlow's equivalent of fine-tuned Wav2Vec2 by Facebook. PyTorch weights are converted into TensorFlow using convert_torch_to_tf.py
finetuned-wav2vec2-960h - This checkpoint is obtained by fine-tuning Wav2Vec2 model on 960h of LibriSpeech dataset during my GSoC tenure. You can reproduce training by running main.py on TPU v3-8

To know more about the process of obtaining the first two checkpoints, please check out this section and to know about the process of obtaining the last checkpoint, please check out this section.

Using this Repository

Wav2Vec2 model from this repository can be installed using the pip command:

# this will install the wav2vec2 package
pip3 install git+https://github.com/vasudevgupta7/[email protected]

You can use the fine-tuned checkpoints (from 🤗 Hub) like this:

from wav2vec2 import Wav2Vec2ForCTC, Wav2Vec2Config

config = Wav2Vec2Config()
model = Wav2Vec2ForCTC(config)
# now use this model like any other TF model

# incase you are interested in already trained model, use `.from_pretrained` method
model_id = "finetuned-wav2vec2-960h"
model = Wav2Vec2ForCTC.from_pretrained(model_id)

Additionally, you can use the SavedModel from TFHub like this:

import tensorflow_hub as hub

model_url = "https://tfhub.dev/vasudevgupta7/wav2vec2-960h/1"
model = hub.KerasLayer(model_url)

# use this `model`, just like any other TF SavedModel

Please checkout the notebooks referred to in this repository for more information on how to use the Wav2Vec2 model.

Reproducing this project

Setting Up

# install & setup TensorFlow first
pip3 install tensorflow

# install other requirements of this project using the following command:
pip3 install -qr requirements.txt
sudo apt-get install libsndfile1-dev

# switch to code directory for further steps
cd src

For using TPUs, it's important to store model weights and datasets in the GCS bucket so that TPU can access them directly from there. Hence we will create 2 GCS buckets - one for checkpointing and the other for storing LibriSpeech tfrecords.

# these bucket names will be required to run the training script later
export DATA_BUCKET_NAME="gsoc-librispeech-us"
export CKPT_BUCKET_NAME="gsoc-checkpoints-us"

# create GCS buckets
gsutil mb gs://${DATA_BUCKET_NAME}
gsutil mb gs://${CKPT_BUCKET_NAME}

Preparing dataset

Now we will download the LibriSpeech dataset from the official website & convert them into tfrecords using make_tfrecords.py. Finally, we will export all the tfrecords to the GCS bucket.

# possible values are `dev-clean`, `train-clean-100`, `train-clean-360`, `train-other-500`, `test-clean`
# you will have to follow same steps for all the configurations (specified above).
export DATA_SPLIT=dev-clean

wget https://www.openslr.org/resources/12/${DATA_SPLIT}.tar.gz
tar -xf ${DATA_SPLIT}.tar.gz

python3 make_tfrecords.py --data_dir LibriSpeech/${DATA_SPLIT} -d ${DATA_SPLIT} -n 50

# transfer tfrecords to GCS bucket
gsutil cp -r ${DATA_SPLIT} gs://<DATA_BUCKET_NAME>/${DATA_SPLIT}

Now your GCS bucket (DATA_BUCKET_NAME) should look like this:

.
|- ${DATA_SPLIT}
    |- ${DATA_SPLIT}-0.tfrecord
    |- ${DATA_SPLIT}-1.tfrecord
    .
    .

Follow the above steps for all other data splits. You just need to change the DATA_SPLIT environment variable.

Model training

Now since everything is installed and GCS buckets are configured, we just need to run one command to initiate training.

Note: Following commands assumes that you have exported DATA_BUCKET_NAME & CKPT_BUCKET_NAME environment variables already.

The following command will fine-tune the wav2vec2 model on single/multiple GPUs or Colab/Kaggle TPUs:

python3 main.py

For training on Cloud TPUs, run the following command:

# export `TPU_NAME` environment variable first
# this flag will ensure that your VM connects to the specified TPUs & TPUs become visible to TensorFlow
TPU_NAME=<tpu-name> python3 main.py

Running Conversion script

Original PyTorch checkpoints (from Facebook) can be converted using the conversion script available in this repository.

python3 convert_torch_to_tf.py \
--hf_model_id facebook/wav2vec2-base \ # HuggingFace Hub ID of the model you want to convert
--with_lm_head # Whether to use `Wav2Vec2ForCTC` or `Wav2Vec2Model` from this repository

Running tests

# first install `torch` & `transformers`
pip3 install torch transformers

# run this from the root of this repository
pytest -sv tests

Acknowledgement

References

[1] Baevski, Alexei, et al. “Wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations.” ArXiv:2006.11477 [Cs, Eess], Oct. 2020. arXiv.org, http://arxiv.org/abs/2006.11477.

End Notes

Please create an issue in case you encountered any issues while using this project. Don't forget to 🌟 this repository if you liked my work.

Owner
Vasudev Gupta
Open Source @huggingface, @tensorflow | Interested in Speech & Text
Vasudev Gupta
PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI

data2vec-pytorch PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI (F

Aryan Shekarlaban 105 Jan 04, 2023
This is the source code of RPG (Reward-Randomized Policy Gradient)

RPG (Reward-Randomized Policy Gradient) Zhenggang Tang*, Chao Yu*, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon Shaolei Du, Yu Wang, Yi Wu (

40 Nov 25, 2022
Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet.

Sonnet finder Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet. Usage This is a Python scrip

Marcel Bollmann 11 Sep 25, 2022
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Jan 03, 2023
The Sudachi synonym dictionary in Solar format.

solr-sudachi-synonyms The Sudachi synonym dictionary in Solar format. Summary Run a script that checks for updates to the Sudachi dictionary every hou

Karibash 3 Aug 19, 2022
Multiple implementations for abstractive text summurization , using google colab

Text Summarization models if you are able to endorse me on Arxiv, i would be more than glad https://arxiv.org/auth/endorse?x=FRBB89 thanks This repo i

463 Dec 26, 2022
Modular and extensible speech recognition library leveraging pytorch-lightning and hydra.

Lightning ASR Modular and extensible speech recognition library leveraging pytorch-lightning and hydra What is Lightning ASR • Installation • Get Star

Soohwan Kim 40 Sep 19, 2022
An assignment from my grad-level data mining course demonstrating some experience with NLP/neural networks/Pytorch

NLP-Pytorch-Assignment An assignment from my grad-level data mining course (before I started personal projects) demonstrating some experience with NLP

David Thorne 0 Feb 06, 2022
code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Approximately Correct Machine Intelligence (ACMI) Lab 21 Nov 24, 2022
A framework for cleaning Chinese dialog data

A framework for cleaning Chinese dialog data

Yida 136 Dec 20, 2022
Tools for curating biomedical training data for large-scale language modeling

Tools for curating biomedical training data for large-scale language modeling

BigScience Workshop 242 Dec 25, 2022
MicBot - MicBot uses Google Translate to speak everyone's chat messages

MicBot MicBot uses Google Translate to speak everyone's chat messages. It can al

2 Mar 09, 2022
Différents programmes créant une interface graphique a l'aide de Tkinter pour simplifier la vie des étudiants.

GP211-Grand-Projet Ce repertoire contient tout les programmes nécessaires au bon fonctionnement de notre projet-logiciel. Cette interface graphique es

1 Dec 21, 2021
:P Some basic stuff I'm gonna use for my upcoming Agile Software Development and Devops

reverse-image-search-py bash script.sh img_name.jpg Requirements pip install requests pip install pyshorteners Dry run [ Sudhanva M 3 Dec 18, 2021

Linking data between GBIF, Biodiverse, and Open Tree of Life

GBIF-biodiverse-OpenTree Linking data between GBIF, Biodiverse, and Open Tree of Life The python scripts will rely on opentree and Dendropy. To set up

2 Oct 03, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 07, 2023
Applied Natural Language Processing in the Enterprise - An O'Reilly Media Publication

Applied Natural Language Processing in the Enterprise This is the companion repo for Applied Natural Language Processing in the Enterprise, an O'Reill

Applied Natural Language Processing in the Enterprise 95 Jan 05, 2023
Black for Python docstrings and reStructuredText (rst).

Style-Doc Style-Doc is Black for Python docstrings and reStructuredText (rst). It can be used to format docstrings (Google docstring format) in Python

Telekom Open Source Software 13 Oct 24, 2022
code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Kundan Krishna 6 Jun 04, 2021
keras implement of transformers for humans

keras implement of transformers for humans

苏剑林(Jianlin Su) 4.8k Jan 03, 2023