Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

Overview

A Shared Representation for Photorealistic Driving Simulators

The official code for the paper: "A Shared Representation for Photorealistic Driving Simulators" , paper, arXiv

A Shared Representation for Photorealistic Driving Simulators
Saeed Saadatnejad, Siyuan Li, Taylor Mordan, Alexandre Alahi, 2021. A powerful simulator highly decreases the need for real-world tests when training and evaluating autonomous vehicles. Data-driven simulators flourished with the recent advancement of conditional Generative Adversarial Networks (cGANs), providing high-fidelity images. The main challenge is synthesizing photo-realistic images while following given constraints. In this work, we propose to improve the quality of generated images by rethinking the discriminator architecture. The focus is on the class of problems where images are generated given semantic inputs, such as scene segmentation maps or human body poses. We build on successful cGAN models to propose a new semantically-aware discriminator that better guides the generator. We aim to learn a shared latent representation that encodes enough information to jointly do semantic segmentation, content reconstruction, along with a coarse-to-fine grained adversarial reasoning. The achieved improvements are generic and simple enough to be applied to any architecture of conditional image synthesis. We demonstrate the strength of our method on the scene, building, and human synthesis tasks across three different datasets.

Example

Getting Started

These instructions will get you a copy of the project up and running on your local machine for development and testing purposes.

  1. Clone this repo.
git clone https://github.com/vita-epfl/SemDisc.git
cd ./SemDisc

Prerequisites

  1. Please install dependencies by
pip install -r requirements.txt

Dataset Preparation

  1. The cityscapes dataset can be downloaded from here: cityscapes

For the experiment, you will need to download [gtFine_trainvaltest.zip] and [leftImg8bit_trainvaltest.zip] and unzip them.

Training

After preparing all necessary environments and the dataset, activate your environment and start to train the network.

Training with the semantic-aware discriminator

The training is doen in two steps. First, the network is trained without only the adversarial head of D:

python train.py --name spade_semdisc --dataset_mode cityscapes --netG spade --c2f_sem_rec --normalize_smaps \
--checkpoints_dir <checkpoints path> --dataroot <data path> \
--lambda_seg 1 --lambda_rec 1 --lambda_GAN 35 --lambda_feat 10 --lambda_vgg 10 --fine_grained_scale 0.05 \
--niter_decay 0 --niter 100 \
--aspect_ratio 1 --load_size 256 --crop_size 256 --batchSize 16 --gpu_ids 0

After the network is trained for some epochs, we finetune it with the complete D:

python train.py --name spade_semdisc --dataset_mode cityscapes --netG spade --c2f_sem_rec --normalize_smaps \
--checkpoints_dir <checkpoints path> --dataroot <data path> \
--lambda_seg 1 --lambda_rec 1 --lambda_GAN 35 --lambda_feat 10 --lambda_vgg 10 --fine_grained_scale 0.05 \
--niter_decay 100 --niter 100 --continue_train --active_GSeg \
--aspect_ratio 1 --load_size 256 --crop_size 256 --batchSize 16 --gpu_ids 0

You can change netG to different options [spade, asapnets, pix2pixhd].

Training with original discriminator

The original model can be trained with the following command for comparison.

python train.py --name spade_orig --dataset_mode cityscapes --netG spade \
--checkpoints_dir <checkpoints path> --dataroot <data path> \
--niter_decay 100 --niter 100 --aspect_ratio 1 --load_size 256 --crop_size 256 --batchSize 16 --gpu_ids 0

Similarly, you can change netG to different options [spade, asapnets, pix2pixhd].

For now, only training on GPU is supported. In case of lack of space, try decreasing the batch size.

Test

Tests - image synthesis

After you have the trained networks, run the test as follows to get the synthesized images for both original and semdisc models

python test.py --name $name --dataset_mode cityscapes \
--checkpoints_dir <checkpoints path> --dataroot <data path> --results_dir ./results/ \
--which_epoch latest --aspect_ratio 1 --load_size 256 --crop_size 256 \
--netG spade --how_many 496

Tests - FID

For reporting FID scores, we leveraged fid-pytorch. To compute the score between two sets:

python fid/pytorch-fid/fid_score.py <GT_image path> <synthesized_image path> >> results/fid_$name.txt

Tests - segmentation

For reporting the segmentation scores, we used DRN. The pre-trained model (and some other details) can be found on this page. Follow the instructions on the DRN github page to setup Cityscapes.

You should have a main folder containing the drn/ folder (from github), the model .pth, the info.json, the val_images.txt and val_labels.txt, a 'labels' folder with the *_trainIds.png images, and a 'synthesized_image' folder with your *_leftImg8bit.png images.

The info.json is from the github, the val_images.txt and val_labels.txt can be obtained with the commands:

find labels/ -maxdepth 3 -name "*_trainIds.png" | sort > val_labels.txt
find synthesized_image/ -maxdepth 3 -name "*_leftImg8bit.png" | sort > val_images.txt

You also need to resize the label images to that size. You can do it with the convert command:

convert -sample 512X256\! "<Cityscapes val>/frankfurt/*_trainIds.png" -set filename:base "%[base]" "<path>/labels/%[filename:base].png"
convert -sample 512X256\! "<Cityscapes val>/lindau/*_trainIds.png" -set filename:base "%[base]" "<path>/labels/%[filename:base].png"
convert -sample 512X256\! "<Cityscapes val>/munster/*_trainIds.png" -set filename:base "%[base]" "<path>/labels/%[filename:base].png"

and the output of the models:

convert -sample 512X256\! "<Cityscapes test results path>/test_latest/images/synthesized_image/*.png" -set filename:base "%[base]" "synthesized_image/%[filename:base].png"

Then I run the model with:

cd drn/
python3 segment.py test -d ../ -c 19 --arch drn_d_105 --pretrained ../drn-d-105_ms_cityscapes.pth --phase val --batch-size 1 --ms >> ./results/seg_$name.txt

Acknowledgments

The base of the code is borrowed from SPADE. Please refer to SPADE to see the details.

Citation

@article{saadatnejad2021semdisc,
  author={Saadatnejad, Saeed and Li, Siyuan and Mordan, Taylor and Alahi, Alexandre},
  journal={IEEE Transactions on Intelligent Transportation Systems}, 
  title={A Shared Representation for Photorealistic Driving Simulators}, 
  year={2021},
  doi={10.1109/TITS.2021.3131303}
}
Owner
VITA lab at EPFL
Visual Intelligence for Transportation
VITA lab at EPFL
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 42 Dec 09, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Selim Seferbekov 24 Nov 23, 2022
AI Virtual Calculator: This is a simple virtual calculator based on Artificial intelligence.

AI Virtual Calculator: This is a simple virtual calculator that works with gestures using OpenCV. We will use our hand in the air to click on the calc

Md. Rakibul Islam 1 Jan 13, 2022
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This

Phil Wang 259 Jan 04, 2023
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Vinicius Senger 5 Nov 30, 2022
Official code for "Distributed Deep Learning in Open Collaborations" (NeurIPS 2021)

Distributed Deep Learning in Open Collaborations This repository contains the code for the NeurIPS 2021 paper "Distributed Deep Learning in Open Colla

Yandex Research 96 Sep 15, 2022
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022
A chemical analysis of lipophilicities & molecule drawings including ML

A chemical analysis of lipophilicity & molecule drawings including a bit of ML analysis. This is a simple project that includes two Jupyter files (one

Aurimas A. NausÄ—das 7 Nov 22, 2022
Pytorch Implementation of "Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation"

CRL_EGPG Pytorch Implementation of Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation We use contrastive loss implemented b

YHR 25 Nov 14, 2022
render sprites into your desktop environment as shaped windows using GTK

spritegtk render static or animated sprites into your desktop environment as dynamic shaped windows using GTK requires pycairo and PYGobject: pip inst

hermit 20 Oct 27, 2022
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Pushpendu Ghosh 270 Dec 24, 2022
Masked regression code - Masked Regression

Masked Regression MR - Python Implementation This repositery provides a python implementation of MR (Masked Regression). MR can efficiently synthesize

Arbish Akram 1 Dec 23, 2021
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 04, 2023
Automated image registration. Registrationimation was too much of a mouthful.

alignimation Automated image registration. Registrationimation was too much of a mouthful. This repo contains the code used for my blog post Alignimat

Ethan Rosenthal 9 Oct 13, 2022
Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process

Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process, a complete algorithm library is esta

Fu Pengyou 50 Jan 07, 2023
Quantum-enhanced transformer neural network

Example of a Quantum-enhanced transformer neural network Get the code: git clone https://github.com/rdisipio/qtransformer.git cd qtransformer Create

Riccardo Di Sipio 61 Nov 08, 2022
Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Mozhdeh Gheini 16 Jul 16, 2022
SimulLR - PyTorch Implementation of SimulLR

PyTorch Implementation of SimulLR There is an interesting work[1] about simultan

11 Dec 22, 2022