Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Overview

Summary Explorer

Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multiple datasets. It provides a guided assessment of summary quality dimensions such as coverage, faithfulness and position bias. You can inspect summaries from a single model or compare multiple models.

The tool currently hosts the outputs of 55 summarization models across three datasets: CNN DailyMail, XSum, and Webis TL;DR.

To integrate your model in Summary Explorer, please prepare your summaries as described here and contact us.

Use cases

1. View Content Coverage of the Summaries Content Coverage

2. Inspect Hallucinations Hallucinations

3. View Named Entity Coverage of the Summaries Named Entity Coverage

4. Inspect Faithfulness via Relation Alignment Relation Coverage

5. Compare Agreement among Summaries Summary Agreement

6. View Position Bias of a Model Position Bias

Local Deployment

Download the database dump from here and set up the tool as instructed here. The text processing pipeline and sample data can be found here.

Note: The tool is in active development and we plan to add new features. Please feel free to report any issues and provide suggestions.

Citation

@misc{syed2021summary,
      title={Summary Explorer: Visualizing the State of the Art in Text Summarization}, 
      author={Shahbaz Syed and Tariq Yousef and Khalid Al-Khatib and Stefan Jänicke and Martin Potthast},
      year={2021},
      eprint={2108.01879},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Acknowledgements

We sincerely thank all the authors who made their code and model outputs publicly available, meta evaluations of Fabbri et al., 2020 and Bhandari et al., 2020, and the summarization leaderboard at NLP-Progress.

We hope this encourages more authors to share their models and summaries to help track the qualitative progress in text summarization research.

Owner
Webis
Web Technology & Information Systems Group (Webis Group)
Webis
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
Using / reproducing ACD from the paper "Hierarchical interpretations for neural network predictions" 🧠 (ICLR 2019)

Hierarchical neural-net interpretations (ACD) 🧠 Produces hierarchical interpretations for a single prediction made by a pytorch neural network. Offic

Chandan Singh 111 Jan 03, 2023
ModelChimp is an experiment tracker for Deep Learning and Machine Learning experiments.

ModelChimp What is ModelChimp? ModelChimp is an experiment tracker for Deep Learning and Machine Learning experiments. ModelChimp provides the followi

ModelChimp 124 Dec 21, 2022
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Dec 30, 2022
pytorch implementation of "Distilling a Neural Network Into a Soft Decision Tree"

Soft-Decision-Tree Soft-Decision-Tree is the pytorch implementation of Distilling a Neural Network Into a Soft Decision Tree, paper recently published

Kim Heecheol 262 Dec 04, 2022
tensorboard for pytorch (and chainer, mxnet, numpy, ...)

tensorboardX Write TensorBoard events with simple function call. The current release (v2.1) is tested on anaconda3, with PyTorch 1.5.1 / torchvision 0

Tzu-Wei Huang 7.5k Jan 07, 2023
Bias and Fairness Audit Toolkit

The Bias and Fairness Audit Toolkit Aequitas is an open-source bias audit toolkit for data scientists, machine learning researchers, and policymakers

Data Science for Social Good 513 Jan 06, 2023
Implementation of linear CorEx and temporal CorEx.

Correlation Explanation Methods Official implementation of linear correlation explanation (linear CorEx) and temporal correlation explanation (T-CorEx

Hrayr Harutyunyan 34 Nov 15, 2022
A library that implements fairness-aware machine learning algorithms

Themis ML themis-ml is a Python library built on top of pandas and sklearnthat implements fairness-aware machine learning algorithms. Fairness-aware M

Niels Bantilan 105 Dec 30, 2022
Model analysis tools for TensorFlow

TensorFlow Model Analysis TensorFlow Model Analysis (TFMA) is a library for evaluating TensorFlow models. It allows users to evaluate their models on

1.2k Dec 26, 2022
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

56 Jan 03, 2023
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX, TensorFlow Lite, Keras, Caffe, Darknet, ncnn,

Lutz Roeder 20.9k Dec 28, 2022
Pytorch Feature Map Extractor

MapExtrackt Convolutional Neural Networks Are Beautiful We all take our eyes for granted, we glance at an object for an instant and our brains can ide

Lewis Morris 40 Dec 07, 2022
A collection of infrastructure and tools for research in neural network interpretability.

Lucid Lucid is a collection of infrastructure and tools for research in neural network interpretability. We're not currently supporting tensorflow 2!

4.5k Jan 07, 2023
Interactive convnet features visualization for Keras

Quiver Interactive convnet features visualization for Keras The quiver workflow Video Demo Build your model in keras model = Model(...) Launch the vis

Keplr 1.7k Dec 21, 2022
Logging MXNet data for visualization in TensorBoard.

Logging MXNet Data for Visualization in TensorBoard Overview MXBoard provides a set of APIs for logging MXNet data for visualization in TensorBoard. T

Amazon Web Services - Labs 327 Dec 05, 2022
Visual Computing Group (Ulm University) 99 Nov 30, 2022
A collection of research papers and software related to explainability in graph machine learning.

A collection of research papers and software related to explainability in graph machine learning.

AstraZeneca 1.9k Dec 26, 2022
Python implementation of R package breakDown

pyBreakDown Python implementation of breakDown package (https://github.com/pbiecek/breakDown). Docs: https://pybreakdown.readthedocs.io. Requirements

MI^2 DataLab 41 Mar 17, 2022
Code for "High-Precision Model-Agnostic Explanations" paper

Anchor This repository has code for the paper High-Precision Model-Agnostic Explanations. An anchor explanation is a rule that sufficiently “anchors”

Marco Tulio Correia Ribeiro 735 Jan 05, 2023