PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Related tags

GeolocationBAS
Overview

Background Activation Suppression for Weakly Supervised Object Localization

PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''. This repository contains PyTorch training code, inference code and pretrained models.

πŸ“‹ Table of content

  1. πŸ“Ž Paper Link
  2. πŸ’‘ Abstract
  3. ✨ Motivation
  4. πŸ“– Method
  5. πŸ“ƒ Requirements
  6. ✏️ Usage
    1. Start
    2. Download Datasets
    3. Training
    4. Inference
  7. πŸ“Š Experimental Results
  8. βœ‰οΈ Statement
  9. πŸ” Citation

πŸ“Ž Paper Link

Background Activation Suppression for Weakly Supervised Object Localization (link)

  • Authors: Pingyu Wu*, Wei Zhai*, Yang Cao
  • Institution: University of Science and Technology of China (USTC)

πŸ’‘ Abstract

Weakly supervised object localization (WSOL) aims to localize the object region using only image-level labels as supervision. Recently a new paradigm has emerged by generating a foreground prediction map (FPM) to achieve the localization task. Existing FPM-based methods use cross-entropy (CE) to evaluate the foreground prediction map and to guide the learning of generator. We argue for using activation value to achieve more efficient learning. It is based on the experimental observation that, for a trained network, CE converges to zero when the foreground mask covers only part of the object region. While activation value increases until the mask expands to the object boundary, which indicates that more object areas can be learned by using activation value. In this paper, we propose a Background Activation Suppression (BAS) method. Specifically, an Activation Map Constraint module (AMC) is designed to facilitate the learning of generator by suppressing the background activation values. Meanwhile, by using the foreground region guidance and the area constraint, BAS can learn the whole region of the object. Furthermore, in the inference phase, we consider the prediction maps of different categories together to obtain the final localization results. Extensive experiments show that BAS achieves significant and consistent improvement over the baseline methods on the CUB-200-2011 and ILSVRC datasets.

✨ Motivation


Motivation. (A) The entroy value of CE loss $w.r.t$ foreground mask and foreground activation value $w.r.t$ foreground mask. To illustrate the generality of this phenomenon, more examples are shown in the subfigure on the right. (B) Experimental procedure and related definitions. Implementation details of the experiment and further results are available in the Supplementary Material.

Exploratory Experiment

We introduce the implementation of the experiment, as shown in Fig. \ref{Exploratory Experiment} (A). For a given GT binary mask, the activation value (Activation) and cross-entropy (Entropy) corresponding to this mask are generated by masking the feature map. We erode and dilate the ground-truth mask with a convolution of kernel size $5n \times 5n$, obtain foreground masks with different area sizes by changing the value of $n$, and plot the activation value versus cross-entropy with the area as the horizontal axis, as shown in Fig. \ref{Exploratory Experiment} (B). By inverting the foreground mask, the corresponding background activation values for the foreground mask area are generated in the same way. In Fig. \ref{Exploratory Experiment} (C), we show the curves of entropy, foreground activation, and background activation with mask area. It can be noticed that both background activation and foreground activation values have a higher correlation with the mask compared to the entropy. We show more examples in the Supplementary Material.


Exploratory Experiment. Examples about the entroy value of CE loss $w.r.t$ foreground mask and foreground activation value $w.r.t$ foreground mask.

πŸ“– Method


The architecture of the proposed BAS. In the training phase, the class-specific foreground prediction map $F^{fg}$ and the coupled background prediction map $F^{bg}$ are obtained by the generator, and then fed into the activation map constraint module together with the feature map $F$. In the inference phase, we utilize Top-k to generate the final localization map.

πŸ“ƒ Requirements

  • python 3.6.10
  • torch 1.4.0
  • torchvision 0.5.0
  • opencv 4.5.3

✏️ Usage

Start

git clone https://github.com/wpy1999/BAS.git
cd BAS

Download Datasets

Training

We will release our training code upon acceptance.

Inference

To test the CUB models, you can download the trained models from [ Google Drive (VGG16) ], [ Google Drive (Mobilenetv1) ], [ Google Drive (ResNet50) ], [ Google Drive (Inceptionv3) ], then run BAS_inference.py:

cd CUB
python BAS_inference.py --arch ${Backbone}

To test the ILSVRC models, you can download the trained models from [ Google Drive (VGG16) ], [ Google Drive (Mobilenetv1) ], [ Google Drive (ResNet50) ], [ Google Drive (Inceptionv3) ], then run BAS_inference.py:

cd ILSVRC
python BAS_inference.py --arch ${Backbone}

πŸ“Š Experimental Results



βœ‰οΈ Statement

This project is for research purpose only, please contact us for the licence of commercial use. For any other questions please contact [email protected] or [email protected].

πŸ” Citation

@inproceedings{BAS,
  title={Background Activation Suppression for Weakly Supervised Object Localization},
  author={Pingyu Wu and Wei Zhai and Yang Cao},
  journal={arXiv preprint arXiv:2112.00580},
  year={2021}
}
Hapi is a Python library for building Conceptual Distributed Model using HBV96 lumped model & Muskingum routing method

Current build status All platforms: Current release info Name Downloads Version Platforms Hapi - Hydrological library for Python Hapi is an open-sourc

Mostafa Farrag 15 Dec 26, 2022
Python renderer for OpenStreetMap with custom icons intended to display as many map features as possible

Map Machine project consists of Python OpenStreetMap renderer: SVG map generation, SVG and PNG tile generation, RΓΆntgen icon set: unique CC-BY 4.0 map

Sergey Vartanov 0 Dec 18, 2022
QLUSTER is a relative orbit design tool for formation flying satellite missions and space rendezvous scenarios

QLUSTER is a relative orbit design tool for formation flying satellite missions and space rendezvous scenarios, that I wrote in Python 3 for my own research and visualisation. It is currently unfinis

Samuel Low 9 Aug 23, 2022
Example of animated maps in matplotlib + geopandas using entire time series of congressional district maps from UCLA archive. rendered, interactive version below

Example of animated maps in matplotlib + geopandas using entire time series of congressional district maps from UCLA archive. rendered, interactive version below

Apoorva Lal 5 May 18, 2022
Python script that can be used to generate latitude/longitude coordinates for GOES-16 full-disk extent.

goes-latlon Python script that can be used to generate latitude/longitude coordinates for GOES-16 full-disk extent. 🌎 πŸ›°οΈ The grid files can be acces

Douglas Uba 3 Apr 06, 2022
This repository contains the scripts to derivate the ENU and ECEF coordinates from the longitude, latitude, and altitude values encoded in the NAD83 coordinates.

This repository contains the scripts to derivate the ENU and ECEF coordinates from the longitude, latitude, and altitude values encoded in the NAD83 coordinates.

Luigi Cruz 1 Feb 07, 2022
A utility to search, download and process Landsat 8 satellite imagery

Landsat-util Landsat-util is a command line utility that makes it easy to search, download, and process Landsat imagery. Docs For full documentation v

Development Seed 681 Dec 07, 2022
OSMnx: Python for street networks. Retrieve, model, analyze, and visualize street networks and other spatial data from OpenStreetMap.

OSMnx OSMnx is a Python package that lets you download geospatial data from OpenStreetMap and model, project, visualize, and analyze real-world street

Geoff Boeing 4k Jan 08, 2023
GebPy is a Python-based, open source tool for the generation of geological data of minerals, rocks and complete lithological sequences.

GebPy is a Python-based, open source tool for the generation of geological data of minerals, rocks and complete lithological sequences. The data can be generated randomly or with respect to user-defi

Maximilian Beeskow 16 Nov 29, 2022
Download and process satellite imagery in Python using Sentinel Hub services.

Description The sentinelhub Python package allows users to make OGC (WMS and WCS) web requests to download and process satellite images within your Py

Sentinel Hub 659 Dec 23, 2022
The geospatial toolkit for redistricting data.

maup maup is the geospatial toolkit for redistricting data. The package streamlines the basic workflows that arise when working with blocks, precincts

Metric Geometry and Gerrymandering Group 60 Dec 05, 2022
Interactive Maps with Geopandas

Create Interactive maps πŸ—ΊοΈ with your geodataframe Geopatra extends geopandas for interactive mapping and attempts to wrap the goodness of amazing map

sangarshanan 46 Aug 16, 2022
Focal Statistics

Focal-Statistics The Focal statistics tool in many GIS applications like ArcGIS, QGIS and GRASS GIS is a standard method to gain a local overview of r

Ifeanyi Nwasolu 1 Oct 21, 2021
Open GeoJSON data on geojson.io

geojsonio.py Open GeoJSON data on geojson.io from Python. geojsonio.py also contains a command line utility that is a Python port of geojsonio-cli. Us

Jacob Wasserman 114 Dec 21, 2022
Python Data. Leaflet.js Maps.

folium Python Data, Leaflet.js Maps folium builds on the data wrangling strengths of the Python ecosystem and the mapping strengths of the Leaflet.js

6k Jan 02, 2023
A Python tool to display geolocation information in the traceroute.

IP2Trace Python IP2Trace Python is a Python tool allowing user to get IP address information such as country, region, city, latitude, longitude, zip c

IP2Location 22 Jan 08, 2023
Python script to locate mobile number

Python script to locate mobile number How to use this script run the command to install the required libraries pip install -r requirements.txt run the

Shekhar Gupta 8 Oct 10, 2022
Asynchronous Client for the worlds fastest in-memory geo-database Tile38

This is an asynchonous Python client for Tile38 that allows for fast and easy interaction with the worlds fastest in-memory geodatabase Tile38.

Ben 53 Dec 29, 2022
Spatial Interpolation Toolbox is a Python-based GUI that is able to interpolate spatial data in vector format.

Spatial Interpolation Toolbox This is the home to Spatial Interpolation Toolbox, a graphical user interface (GUI) for interpolating geographic vector

Michael Ward 2 Nov 01, 2021
Geospatial web application developed uisng earthengine, geemap, and streamlit.

geospatial-streamlit Geospatial web applications developed uisng earthengine, geemap, and streamlit. App 1 - Land Surface Temperature A simple, code-f

13 Nov 27, 2022