Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Overview

SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes

Paper | Supp | Video | Project Page | Blog (AITAVG)

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes. We propose a novel forward skinning module to animate neural implicit shapes with good generalization to unseen poses.

If you find our code or paper useful, please cite as

@inproceedings{chen2021snarf,
  title={SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit Shapes},
  author={Chen, Xu and Zheng, Yufeng and Black, Michael J and Hilliges, Otmar and Geiger, Andreas},
  booktitle={International Conference on Computer Vision (ICCV)},
  year={2021}
}

Quick Start

Clone this repo:

git clone https://github.com/xuchen-ethz/snarf.git
cd snarf

Install environment:

conda env create -f environment.yml
conda activate snarf
python setup.py install

Download SMPL models (1.0.0 for Python 2.7 (10 shape PCs)) and move them to the corresponding places:

mkdir lib/smpl/smpl_model/
mv /path/to/smpl/models/basicModel_f_lbs_10_207_0_v1.0.0.pkl lib/smpl/smpl_model/SMPL_FEMALE.pkl
mv /path/to/smpl/models/basicmodel_m_lbs_10_207_0_v1.0.0.pkl lib/smpl/smpl_model/SMPL_MALE.pkl

Download our pretrained models and test motion sequences:

sh ./download_data.sh

Run a quick demo for clothed human:

python demo.py expname=cape subject=3375 demo.motion_path=data/aist_demo/seqs +experiments=cape

You can the find the video in outputs/cape/3375/demo.mp4 and images in outputs/cape/3375/images/. To save the meshes, add demo.save_mesh=true to the command.

You can also try other subjects (see outputs/data/cape for available options) by setting subject=xx, and other motion sequences from AMASS by setting demo.motion_path=/path/to/amass_modetion.npz.

Some motion sequences have high fps and one might want to skip some frames. To do this, add demo.every_n_frames=x to consider every x frame in the motion sequence. (e.g. demo.every_n_frames=10 for PosePrior sequences)

By default, we use demo.fast_mode=true for fast mesh extraction. In this mode, we first extract mesh in canonical space, and then forward skin the mesh to posed space. This bypasses the root finding during inference, thus is faster. However, it's not really deforming a continuous field. To first deform the continuous field and then extract mesh in deformed space, use demo.fast_mode=false instead.

Training and Evaluation

Install Additional Dependencies

Install kaolin for fast occupancy query from meshes.

git clone https://github.com/NVIDIAGameWorks/kaolin
cd kaolin
git checkout v0.9.0
python setup.py develop

Minimally Clothed Human

Prepare Datasets

Download the AMASS dataset. We use ''DFaust Snythetic'' and ''PosePrior'' subsets and SMPL-H format. Unzip the dataset into data folder.

tar -xf DFaust67.tar.bz2 -C data
tar -xf MPILimits.tar.bz2 -C data

Preprocess dataset:

python preprocess/sample_points.py --output_folder data/DFaust_processed
python preprocess/sample_points.py --output_folder data/MPI_processed --skip 10 --poseprior

Training

Run the following command to train for a specified subject:

python train.py subject=50002

Training logs are available on wandb (registration needed, free of charge). It should take ~12h on a single 2080Ti.

Evaluation

Run the following command to evaluate the method for a specified subject on within distribution data (DFaust test split):

python test.py subject=50002

and outside destribution (PosePrior):

python test.py subject=50002 datamodule=jointlim

Generate Animation

You can use the trained model to generate animation (same as in Quick Start):

python demo.py expname='dfaust' subject=50002 demo.motion_path='data/aist_demo/seqs'

Clothed Human

Training

Download the CAPE dataset and unzip into data folder.

Run the following command to train for a specified subject and clothing type:

python train.py datamodule=cape subject=3375 datamodule.clothing='blazerlong' +experiments=cape  

Training logs are available on wandb. It should take ~24h on a single 2080Ti.

Generate Animation

You can use the trained model to generate animation (same as in Quick Start):

python demo.py expname=cape subject=3375 demo.motion_path=data/aist_demo/seqs +experiments=cape

Acknowledgement

We use the pre-processing code in PTF and LEAP with some adaptions (./preprocess). The network and sampling part of the code (lib/model/network.py and lib/model/sample.py) is implemented based on IGR and IDR. The code for extracting mesh (lib/utils/meshing.py) is adapted from NASA. Our implementation of Broyden's method (lib/model/broyden.py) is based on DEQ. We sincerely thank these authors for their awesome work.

This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021.

SG2HOI This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021. Installation Pytorch 1.7

HT 10 Dec 20, 2022
A diff tool for language models

LMdiff Qualitative comparison of large language models. Demo & Paper: http://lmdiff.net LMdiff is a MIT-IBM Watson AI Lab collaboration between: Hendr

Hendrik Strobelt 27 Dec 29, 2022
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
Ego4d dataset repository. Download the dataset, visualize, extract features & example usage of the dataset

Ego4D EGO4D is the world's largest egocentric (first person) video ML dataset and benchmark suite, with 3,600 hrs (and counting) of densely narrated v

Meta Research 118 Jan 07, 2023
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si

Mingcan Xiang 100 Dec 17, 2022
Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-like Documents.

Value Retrieval with Arbitrary Queries for Form-like Documents Introduction Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-

Salesforce 13 Sep 15, 2022
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow

Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t

Rishit Dagli 84 Oct 15, 2022
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
Deep learning for spiking neural networks

A deep learning library for spiking neural networks. Norse aims to exploit the advantages of bio-inspired neural components, which are sparse and even

Electronic Vision(s) Group — BrainScaleS Neuromorphic Hardware 59 Nov 28, 2022
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation This repository contains the source code of our paper, ESPNet (acc

Sachin Mehta 515 Dec 13, 2022
Ensembling Off-the-shelf Models for GAN Training

Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br

MIT HAN Lab 1.2k Dec 26, 2022
Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness This repository contains the code used for the exper

H.R. Oosterhuis 28 Nov 29, 2022
OpenCV, MediaPipe Pose Estimation, Affine Transform for Icon Overlay

Yoga Pose Identification and Icon Matching Project Goal Detect yoga poses performed by a user and overlay a corresponding icon image. Running the main

Anna Garverick 1 Dec 03, 2021
Python implementation of ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images, AAAI2022.

ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images Binh M. Le & Simon S. Woo, "ADD:

2 Oct 24, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting" by Shu et al.

[Re] Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping

Robert Cedergren 1 Mar 13, 2020
Implementation of Sequence Generative Adversarial Nets with Policy Gradient

SeqGAN Requirements: Tensorflow r1.0.1 Python 2.7 CUDA 7.5+ (For GPU) Introduction Apply Generative Adversarial Nets to generating sequences of discre

Lantao Yu 2k Dec 29, 2022