Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)

Overview

Maximum Likelihood Training of Score-Based Diffusion Models

This repo contains the official implementation for the paper Maximum Likelihood Training of Score-Based Diffusion Models

by Yang Song*, Conor Durkan*, Iain Murray, and Stefano Ermon. Published in NeurIPS 2021 (spotlight).


We prove the connection between the Kullback–Leibler divergence and the weighted combination of score matching losses used for training score-based generative models. Our results can be viewed as a generalization of both the de Bruijn identity in information theory and the evidence lower bound in variational inference.

Our theoretical results enable ScoreFlow, a continuous normalizing flow model trained with a variational objective, which is much more efficient than neural ODEs. We report the state-of-the-art likelihood on CIFAR-10 and ImageNet 32x32 among all flow models, achieving comparable performance to cutting-edge autoregressive models.

How to run the code

Dependencies

Run the following to install a subset of necessary python packages for our code

pip install -r requirements.txt

Stats files for quantitative evaluation

We provide stats files for computing FID and Inception scores for CIFAR-10 and ImageNet 32x32. You can find cifar10_stats.npz and imagenet32_stats.npz under the directory assets/stats in our Google drive. Download them and save to assets/stats/ in the code repo.

Usage

Train and evaluate our models through main.py. Here are some common options:

main.py:
  --config: Training configuration.
    (default: 'None')
  --eval_folder: The folder name for storing evaluation results
    (default: 'eval')
  --mode: <train|eval|train_deq>: Running mode: train or eval or training the Flow++ variational dequantization model
  --workdir: Working directory
  • config is the path to the config file. Our config files are provided in configs/. They are formatted according to ml_collections and should be quite self-explanatory.

    Naming conventions of config files: the name of a config file contains the following attributes:

    • dataset: Either cifar10 or imagenet32
    • model: Either ddpmpp_continuous or ddpmpp_deep_continuous
  • workdir is the path that stores all artifacts of one experiment, like checkpoints, samples, and evaluation results.

  • eval_folder is the name of a subfolder in workdir that stores all artifacts of the evaluation process, like meta checkpoints for supporting pre-emption recovery, image samples, and numpy dumps of quantitative results.

  • mode is either "train" or "eval" or "train_deq". When set to "train", it starts the training of a new model, or resumes the training of an old model if its meta-checkpoints (for resuming running after pre-emption in a cloud environment) exist in workdir/checkpoints-meta . When set to "eval", it can do the following:

    • Compute the log-likelihood on the training or test dataset.

    • Compute the lower bound of the log-likelihood on the training or test dataset.

    • Evaluate the loss function on the test / validation dataset.

    • Generate a fixed number of samples and compute its Inception score, FID, or KID. Prior to evaluation, stats files must have already been downloaded/computed and stored in assets/stats.

      When set to "train_deq", it trains a Flow++ variational dequantization model to bridge the gap of likelihoods on continuous and discrete images. Recommended if you want to compete with generative models trained on discrete images, such as VAEs and autoregressive models. train_deq mode also supports pre-emption recovery.

These functionalities can be configured through config files, or more conveniently, through the command-line support of the ml_collections package.

Configurations for training

To turn on likelihood weighting, set --config.training.likelihood_weighting. To additionally turn on importance sampling for variance reduction, use --config.training.likelihood_weighting. To train a separate Flow++ variational dequantizer, you need to first finish training a score-based model, then use --mode=train_deq.

Configurations for evaluation

To generate samples and evaluate sample quality, use the --config.eval.enable_sampling flag; to compute log-likelihoods, use the --config.eval.enable_bpd flag, and specify --config.eval.dataset=train/test to indicate whether to compute the likelihoods on the training or test dataset. Turn on --config.eval.bound to evaluate the variational bound for the log-likelihood. Enable --config.eval.dequantizer to use variational dequantization for likelihood computation. --config.eval.num_repeats configures the number of repetitions across the dataset (more can reduce the variance of the likelihoods; default to 5).

Pretrained checkpoints

All checkpoints are provided in this Google drive.

Folder structure:

  • assets: contains cifar10_stats.npz and imagenet32_stats.npz. Necessary for computing FID and Inception scores.
  • <cifar10|imagenet32>_(deep)_<vp|subvp>_(likelihood)_(iw)_(flip). Here the part enclosed in () is optional. deep in the name specifies whether the score model is a deeper architecture (ddpmpp_deep_continuous). likelihood specifies whether the model was trained with likelihood weighting. iw specifies whether the model was trained with importance sampling for variance reduction. flip shows whether the model was trained with horizontal flip for data augmentation. Each folder has the following two subfolders:
    • checkpoints: contains the last checkpoint for the score-based model.
    • flowpp_dequantizer/checkpoints: contains the last checkpoint for the Flow++ variational dequantization model.

References

If you find the code useful for your research, please consider citing

@inproceedings{song2021maximum,
  title={Maximum Likelihood Training of Score-Based Diffusion Models},
  author={Song, Yang and Durkan, Conor and Murray, Iain and Ermon, Stefano},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}

This work is built upon some previous papers which might also interest you:

  • Yang Song and Stefano Ermon. "Generative Modeling by Estimating Gradients of the Data Distribution." Proceedings of the 33rd Annual Conference on Neural Information Processing Systems, 2019.
  • Yang Song and Stefano Ermon. "Improved techniques for training score-based generative models." Proceedings of the 34th Annual Conference on Neural Information Processing Systems, 2020.
  • Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. "Score-Based Generative Modeling through Stochastic Differential Equations". Proceedings of the 9th International Conference on Learning Representations, 2021.
Owner
Yang Song
PhD Candidate in Stanford AI Lab
Yang Song
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
(CVPR 2022 Oral) Official implementation for "Surface Representation for Point Clouds"

RepSurf - Surface Representation for Point Clouds [CVPR 2022 Oral] By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact) The pytorch off

Haoxi Ran 264 Dec 23, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 125 Dec 31, 2022
Prototypical Cross-Attention Networks for Multiple Object Tracking and Segmentation, NeurIPS 2021 Spotlight

PCAN for Multiple Object Tracking and Segmentation This is the offical implementation of paper PCAN for MOTS. We also present a trailer that consists

ETH VIS Group 328 Dec 29, 2022
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022
Save-restricted-v-3 - Save restricted content Bot For telegram

Save restricted content Bot Contact: Telegram A stable telegram bot to get restr

DEVANSH 11 Dec 21, 2022
Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners

DART Implementation for ICLR2022 paper Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners. Environment

ZJUNLP 83 Dec 27, 2022
Cascaded Pyramid Network (CPN) based on Keras (Tensorflow backend)

ML2 Takehome Project Reimplementing the paper: Cascaded Pyramid Network for Multi-Person Pose Estimation Dataset The model uses the COCO dataset which

Vo Van Tu 1 Nov 22, 2021
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 864 Dec 30, 2022
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022
Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.

LitMatter A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs. How to use Clone this repository and

Nathan Frey 32 Dec 06, 2022
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

Filip Radenovic 188 Dec 17, 2022
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

1 Oct 11, 2021
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection, built on SECOND.

3D-CVF This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object

YecheolKim 97 Dec 20, 2022
Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

JR ROBOTICS 4 Aug 16, 2021
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023