Generating Korean Slogans with phonetic and structural repetition

Overview

LexPOS_ko

Generating Korean Slogans with phonetic and structural repetition

Generating Slogans with Linguistic Features

LexPOS is a sequence-to-sequence transformer model that generates slogans with phonetic and structural repetition. For phonetic repetition, it searches for phonetically similar words with user keywords. Both the sound-alike words and user keywords become the lexical constraints while generating slogans. It also adjusts the logits distribution to implement further phonetic constraints. For structural repetition, LexPOS uses POS constraints. Users can specify any repeated phrase structure by POS tags.

Generating slogans with lexical, POS constraints

1. Code

  • Need to download pretrained Korean word2vec model from here and put it below phonetic_similarity/KoG2P
# clone this repo
git clone https://github.com/yeounyi/LexPOS_ko
cd LexPOS
# generate slogans 
python3 generate_slogans.py --keywords 카드,혜택 --num_beams 3 --temperature 1.2
  • -keywords: Keywords that you want to be included in slogans. You can enter multiple keywords, delimited by comma
  • -pos_inputs: You can either specify the particular list of POS tags delimited by comma, or the model will generate slogans with the most frequent syntax used in corpus. POS tags generally follow the format of Konlpy Mecab POS tags.
  • -num_beams: Number of beams for beam search. Default to 1, meaning no beam search.
  • -temperature: The value used to module the next token probabilities. Default to 1.0.
  • -model_path: Path to the pretrained model

2. Examples

Keyword: 카드, 혜택
POS: [NNG, JK, VV, EC, SF, NNG, JK, VV, EF]
Output: 카드를 택하면, 혜택이 바뀐다

Keyword: 안전, 항공
POS: [MM, NNG, SF, MM, NNG, SF]
Output: 새로운 공항, 안전한 항공

Keywords: 추석, 선물
POS: [NNG, JK, MM, NNG, SF, NNG, JK, MM, NNG]
Output: 추석을 앞둔 추억, 당신을 위한 선물

Model Architecture


Pretrained Model

https://drive.google.com/drive/folders/1opkhDApURnjibVYmmhj5bqLTWy4miNe4?usp=sharing

References

https://github.com/scarletcho/KoG2P

Citation

@misc{yi2021lexpos,
  author = {Yi, Yeoun},
  title = {Generating Korean Slogans with Linguistic Constraints using Sequence-to-Sequence Transformer},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/yeounyi/LexPOS_ko}}
}
Owner
Yeoun Yi
Studying Computational Linguistics | Interested in Advertising & Marketing
Yeoun Yi
Nateve compiler developed with python.

Adam Adam is a Nateve Programming Language compiler developed using Python. Nateve Nateve is a new general domain programming language open source ins

Nateve 7 Jan 15, 2022
Signature remover is a NLP based solution which removes email signatures from the rest of the text.

Signature Remover Signature remover is a NLP based solution which removes email signatures from the rest of the text. It helps to enchance data conten

Forges Alterway 8 Jan 06, 2023
GCRC: A Gaokao Chinese Reading Comprehension dataset for interpretable Evaluation

GCRC GCRC: A New Challenging MRC Dataset from Gaokao Chinese for Explainable Eva

Yunxiao Zhao 5 Nov 04, 2022
Document processing using transformers

Doc Transformers Document processing using transformers. This is still in developmental phase, currently supports only extraction of form data i.e (ke

Vishnu Nandakumar 13 Dec 21, 2022
MiCECo - Misskey Custom Emoji Counter

MiCECo Misskey Custom Emoji Counter Introduction This little script counts custo

7 Dec 25, 2022
DANeS is an open-source E-newspaper dataset by collaboration between DATASET JSC (dataset.vn) and AIV Group (aivgroup.vn)

DANeS - Open-source E-newspaper dataset Source: Technology vector created by macrovector - www.freepik.com. DANeS is an open-source E-newspaper datase

DATASET .JSC 64 Aug 17, 2022
用Resnet101+GPT搭建一个玩王者荣耀的AI

基于pytorch框架用resnet101加GPT搭建AI玩王者荣耀 本源码模型主要用了SamLynnEvans Transformer 的源码的解码部分。以及pytorch自带的预训练模型"resnet101-5d3b4d8f.pth"

冯泉荔 2.2k Jan 03, 2023
Higher quality textures for the Metal Gear Solid series.

Metal Gear Solid: HD Textures Higher quality textures for the Metal Gear Solid series. The goal is to maximize the quality of assets that the engine w

Samantha 6 Dec 06, 2022
Course project of [email protected]

NaiveMT Prepare Clone this repository git clone [email protected]:Poeroz/NaiveMT.git

Poeroz 2 Apr 24, 2022
TTS is a library for advanced Text-to-Speech generation.

TTS is a library for advanced Text-to-Speech generation. It's built on the latest research, was designed to achieve the best trade-off among ease-of-training, speed and quality. TTS comes with pretra

Mozilla 6.5k Jan 08, 2023
A Lightweight NLP Data Loader for All Deep Learning Frameworks in Python

LineFlow: Framework-Agnostic NLP Data Loader in Python LineFlow is a simple text dataset loader for NLP deep learning tasks. LineFlow was designed to

TofuNLP 177 Jan 04, 2023
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
Maix Speech AI lib, including ASR, chat, TTS etc.

Maix-Speech 中文 | English Brief Now only support Chinese, See 中文 Build Clone code by: git clone https://github.com/sipeed/Maix-Speech Compile x86x64 c

Sipeed 267 Dec 25, 2022
Train and use generative text models in a few lines of code.

blather Train and use generative text models in a few lines of code. To see blather in action check out the colab notebook! Installation Use the packa

Dan Carroll 16 Nov 07, 2022
LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search

LightSpeech UnOfficial PyTorch implementation of LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search.

Rishikesh (ऋषिकेश) 54 Dec 03, 2022
The NewSHead dataset is a multi-doc headline dataset used in NHNet for training a headline summarization model.

This repository contains the raw dataset used in NHNet [1] for the task of News Story Headline Generation. The code of data processing and training is available under Tensorflow Models - NHNet.

Google Research Datasets 31 Jul 15, 2022
Concept Modeling: Topic Modeling on Images and Text

Concept is a technique that leverages CLIP and BERTopic-based techniques to perform Concept Modeling on images.

Maarten Grootendorst 120 Dec 27, 2022
NeMo: a toolkit for conversational AI

NVIDIA NeMo Introduction NeMo is a toolkit for creating Conversational AI applications. NeMo product page. Introductory video. The toolkit comes with

NVIDIA Corporation 5.3k Jan 04, 2023
Simple bots or Simbots is a library designed to create simple bots using the power of python. This library utilises Intent, Entity, Relation and Context model to create bots .

Simple bots or Simbots is a library designed to create simple chat bots using the power of python. This library utilises Intent, Entity, Relation and

14 Dec 15, 2021
自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器

ja-timex 自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器 概要 ja-timex は、現代日本語で書かれた自然文に含まれる時間情報表現を抽出しTIMEX3と呼ばれるアノテーション仕様に変換することで、プログラムが利用できるような形に規格化するルールベースの解析器です。

Yuki Okuda 116 Nov 09, 2022