A Unified Generative Framework for Various NER Subtasks.

Related tags

Deep LearningBARTNER
Overview

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks.

Install the package in the requirements.txt, then use the following commands to install two other packages

pip install git+https://github.com/fastnlp/[email protected]
pip install git+https://github.com/fastnlp/fitlog

You need to put your data in the parallel folder of this repo

    - BARTNER/
        - train.py
        ...
    - data/
        - conll2003
            - train.txt
            - text.txt
            - dev.txt
        - en-ontonotes
            - ...
        - Share_2013
        - Share_2014
        - CADEC
        - en_ace04
        - en_ace05
        - genia

For the conll2003 and en-ontonotes you data in each split should like (The first column is words, the second column is tags. We assume the tag is the BIO-tagging)

LONDON B-LOC
1996-08-30 O

West B-MISC
Indian I-MISC
all-rounder O
Phil B-PER

For nested dataset en_ace04, en_ace05 and genia, the data should like (each line is a jsonline, contains ners and sentences keys.)

{"ners": [[[16, 16, "DNA"], [4, 8, "DNA"], [24, 26, "DNA"], [19, 20, "DNA"]], [[31, 31, "DNA"], [2, 2, "DNA"], [4, 4, "DNA"], [30, 31, "DNA"]], [[23, 24, "RNA"], [14, 15, "cell_type"], [1, 2, "RNA"]], [[2, 2, "DNA"]], [], [[0, 0, "DNA"], [9, 9, "cell_type"]]], "sentences": [["There", "is", "a", "single", "methionine", "codon-initiated", "open", "reading", "frame", "of", "1,458", "nt", "in", "frame", "with", "a", "homeobox", "and", "a", "CAX", "repeat", ",", "and", "the", "open", "reading", "frame", "is", "predicted", "to", "encode", "a", "protein", "of", "51,659", "daltons."], ["When", "the", "homeodomain", "from", "HB24", "was", "compared", "to", "known", "mammalian", "and", "Drosophila", "homeodomains", "it", "was", "found", "to", "be", "only", "moderately", "conserved,", "but", "when", "it", "was", "compared", "to", "a", "highly", "diverged", "Drosophila", "homeodomain", ",", "H2.0,", "it", "was", "found", "to", "be", "80%", "identical."], ["The", "HB24", "mRNA", "was", "absent", "or", "present", "at", "low", "levels", "in", "normal", "B", "and", "T", "lymphocytes", ";", "however,", "with", "the", "appropriate", "activation", "signal", "HB24", "mRNA", "was", "induced", "within", "several", "hours", "even", "in", "the", "presence", "of", "cycloheximide", "."], ["Characterization", "of", "HB24", "expression", "in", "lymphoid", "and", "select", "developing", "tissues", "was", "performed", "by", "in", "situ", "hybridization", "."], ["Positive", "hybridization", "was", "found", "in", "thymus", ",", "tonsil", ",", "bone", "marrow", ",", "developing", "vessels", ",", "and", "in", "fetal", "brain", "."], ["HB24", "is", "likely", "to", "have", "an", "important", "role", "in", "lymphocytes", "as", "well", "as", "in", "certain", "developing", "tissues", "."]]}
{"ners": [[[16, 16, "DNA"], [4, 8, "DNA"], [24, 26, "DNA"], [19, 20, "DNA"]], [[31, 31, "DNA"], [2, 2, "DNA"], [4, 4, "DNA"], [30, 31, "DNA"]], [[23, 24, "RNA"], [14, 15, "cell_type"], [1, 2, "RNA"]], [[2, 2, "DNA"]], [], [[0, 0, "DNA"], [9, 9, "cell_type"]]], "sentences": [["There", "is", "a", "single", "methionine", "codon-initiated", "open", "reading", "frame", "of", "1,458", "nt", "in", "frame", "with", "a", "homeobox", "and", "a", "CAX", "repeat", ",", "and", "the", "open", "reading", "frame", "is", "predicted", "to", "encode", "a", "protein", "of", "51,659", "daltons."], ["When", "the", "homeodomain", "from", "HB24", "was", "compared", "to", "known", "mammalian", "and", "Drosophila", "homeodomains", "it", "was", "found", "to", "be", "only", "moderately", "conserved,", "but", "when", "it", "was", "compared", "to", "a", "highly", "diverged", "Drosophila", "homeodomain", ",", "H2.0,", "it", "was", "found", "to", "be", "80%", "identical."], ["The", "HB24", "mRNA", "was", "absent", "or", "present", "at", "low", "levels", "in", "normal", "B", "and", "T", "lymphocytes", ";", "however,", "with", "the", "appropriate", "activation", "signal", "HB24", "mRNA", "was", "induced", "within", "several", "hours", "even", "in", "the", "presence", "of", "cycloheximide", "."], ["Characterization", "of", "HB24", "expression", "in", "lymphoid", "and", "select", "developing", "tissues", "was", "performed", "by", "in", "situ", "hybridization", "."], ["Positive", "hybridization", "was", "found", "in", "thymus", ",", "tonsil", ",", "bone", "marrow", ",", "developing", "vessels", ",", "and", "in", "fetal", "brain", "."], ["HB24", "is", "likely", "to", "have", "an", "important", "role", "in", "lymphocytes", "as", "well", "as", "in", "certain", "developing", "tissues", "."]]}
...

For discontinuous dataset Share_2013, Share_2014 and CADEC, the data should like ( each sample has two lines, if the second line is empty means there is not entity. )

Abdominal cramps , flatulence , gas , bloating .
0,1 ADR|3,3 ADR|7,7 ADR|5,5 ADR

Cramps would start within 15 minutes of taking pill , even during meals .
0,0 ADR

...

We use code from https://github.com/daixiangau/acl2020-transition-discontinuous-ner to pre-process the data.

You can run the code by directly using

python train.py

The following output should be achieved

Save cache to caches/data_facebook/bart-large_conll2003_word.pt.                                                                                                        
max_len_a:0.6, max_len:10
In total 3 datasets:
        test has 3453 instances.
        train has 14041 instances.
        dev has 3250 instances.

The number of tokens in tokenizer  50265
50269 50274
input fields after batch(if batch size is 2):
        tgt_tokens: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 8]) 
        src_tokens: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 11]) 
        first: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 11]) 
        src_seq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) 
        tgt_seq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) 
target fields after batch(if batch size is 2):
        entities: (1)type:numpy.ndarray (2)dtype:object, (3)shape:(2,) 
        tgt_tokens: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 8]) 
        target_span: (1)type:numpy.ndarray (2)dtype:object, (3)shape:(2,) 
        tgt_seq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) 

training epochs started 2021-06-02-11-49-26-964889
Epoch 1/30:   0%|                                                         | 15/32430 [00:06<3:12:37,  2.80it/s, loss:6.96158

Some important python files are listed below

- BartNER
  - data
     - pipe.py # load and process data
  - model
     - bart.py # the model file
  - train.py  # the training file

The different Loaders in the data/pipe.py is meant to load data, and the data.BartNERPipe class is to process data, the loader should load data into a DataBundle object, you can mock the provided Loader to write your own loader, as long as your dataset has the following four fields, the BartNERPipe should be able to process it

- raw_words  # List[str]
    # ['AL-AIN', ',', 'United', 'Arab', 'Emirates', '1996-12-06']
- entities  # List[List[str]]
    # [['AL-AIN'], ['United', 'Arab', 'Emirates']]
- entity_tags  # List[str], the same length as entities
    # ['loc', 'loc']
- entity_spans # List[List[int]], the inner list must have an even number of ints, means the start(inclusive,开区间) and end(exclusive,开区间) of an entity segment
    # [[0, 1], [2, 5]] or for discontinous NER [[0, 1, 5, 7], [2, 3, 5, 7],...]

In order to help you reproduce the results, we have hardcoded the hyper-parameters for each dataset in the code, you can change them based on your need. We conduct all experiments in NVIDIA-3090(24G memory). Some known difficulties about the reproduction of this code: (1) Some datasets (nested and discontinous) will drop to 0 or near 0 F1 during training, please drop these results; (2) randomness will cause large performance variance for some datasets, please try to run multiple times.

We deeply understand how frustrating it can be if the results are hard to reproduce, we tried our best to make sure the results were at least reproducible in our equipment (Usually take average from at least five runs).

Owner
I am currently a PhD candidate in Fudan University.
Clinica is a software platform for clinical research studies involving patients with neurological and psychiatric diseases and the acquisition of multimodal data

Clinica Software platform for clinical neuroimaging studies Homepage | Documentation | Paper | Forum | See also: AD-ML, AD-DL ClinicaDL About The Proj

ARAMIS Lab 165 Dec 29, 2022
22 Oct 14, 2022
Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”

Tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”.

3.7k Dec 31, 2022
Official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation

SegPC-2021 This is the official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation by

Datascience IIT-ISM 13 Dec 14, 2022
'Solving the sampling problem of the Sycamore quantum supremacy circuits

solve_sycamore This repo contains data, contraction code, and contraction order for the paper ''Solving the sampling problem of the Sycamore quantum s

Feng Pan 29 Nov 28, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
Deep Learning Slide Captcha

滑动验证码深度学习识别 本项目使用深度学习 YOLOV3 模型来识别滑动验证码缺口,基于 https://github.com/eriklindernoren/PyTorch-YOLOv3 修改。 只需要几百张缺口标注图片即可训练出精度高的识别模型,识别效果样例: 克隆项目 运行命令: git cl

Python3WebSpider 55 Jan 02, 2023
A DeepStack custom model for detecting common objects in dark/night images and videos.

DeepStack_ExDark This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for d

MOSES OLAFENWA 98 Dec 24, 2022
My tensorflow implementation of "A neural conversational model", a Deep learning based chatbot

Deep Q&A Table of Contents Presentation Installation Running Chatbot Web interface Results Pretrained model Improvements Upgrade Presentation This wor

Conchylicultor 2.9k Dec 28, 2022
Moiré Attack (MA): A New Potential Risk of Screen Photos [NeurIPS 2021]

Moiré Attack (MA): A New Potential Risk of Screen Photos [NeurIPS 2021] This repository is the official implementation of Moiré Attack (MA): A New Pot

Dantong Niu 22 Dec 24, 2022
Kaggle Ultrasound Nerve Segmentation competition [Keras]

Ultrasound nerve segmentation using Keras (1.0.7) Kaggle Ultrasound Nerve Segmentation competition [Keras] #Install (Ubuntu {14,16}, GPU) cuDNN requir

179 Dec 28, 2022
FocusFace: Multi-task Contrastive Learning for Masked Face Recognition

FocusFace This is the official repository of "FocusFace: Multi-task Contrastive Learning for Masked Face Recognition" accepted at IEEE International C

Pedro Neto 21 Nov 17, 2022
Neural Surface Maps

Neural Surface Maps Official implementation of Neural Surface Maps - Luca Morreale, Noam Aigerman, Vladimir Kim, Niloy J. Mitra [Paper] [Project Page]

Luca Morreale 49 Dec 13, 2022
Optimising chemical reactions using machine learning

Summit Summit is a set of tools for optimising chemical processes. We’ve started by targeting reactions. What is Summit? Currently, reaction optimisat

Sustainable Reaction Engineering Group 75 Dec 14, 2022
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
Optimal space decomposition based-product quantization for approximate nearest neighbor search

Optimal space decomposition based-product quantization for approximate nearest neighbor search Abstract Product quantization(PQ) is an effective neare

Mylove 1 Nov 19, 2021
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

THUDM 176 Dec 17, 2022
Repository of our paper 'Refer-it-in-RGBD' in CVPR 2021

Refer-it-in-RGBD This is the repository of our paper 'Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD Images' in CVPR 2021 Pape

Haolin Liu 34 Nov 07, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Repo público onde postarei meus estudos de Python, buscando aprender por meio do compartilhamento do aprendizado!

Seja bem vindo à minha repo de Estudos em Python 3! Este é um repositório criado por um programador amador que estuda tópicos de finanças, estatística

32 Dec 24, 2022