A Unified Generative Framework for Various NER Subtasks.

Related tags

Deep LearningBARTNER
Overview

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks.

Install the package in the requirements.txt, then use the following commands to install two other packages

pip install git+https://github.com/fastnlp/[email protected]
pip install git+https://github.com/fastnlp/fitlog

You need to put your data in the parallel folder of this repo

    - BARTNER/
        - train.py
        ...
    - data/
        - conll2003
            - train.txt
            - text.txt
            - dev.txt
        - en-ontonotes
            - ...
        - Share_2013
        - Share_2014
        - CADEC
        - en_ace04
        - en_ace05
        - genia

For the conll2003 and en-ontonotes you data in each split should like (The first column is words, the second column is tags. We assume the tag is the BIO-tagging)

LONDON B-LOC
1996-08-30 O

West B-MISC
Indian I-MISC
all-rounder O
Phil B-PER

For nested dataset en_ace04, en_ace05 and genia, the data should like (each line is a jsonline, contains ners and sentences keys.)

{"ners": [[[16, 16, "DNA"], [4, 8, "DNA"], [24, 26, "DNA"], [19, 20, "DNA"]], [[31, 31, "DNA"], [2, 2, "DNA"], [4, 4, "DNA"], [30, 31, "DNA"]], [[23, 24, "RNA"], [14, 15, "cell_type"], [1, 2, "RNA"]], [[2, 2, "DNA"]], [], [[0, 0, "DNA"], [9, 9, "cell_type"]]], "sentences": [["There", "is", "a", "single", "methionine", "codon-initiated", "open", "reading", "frame", "of", "1,458", "nt", "in", "frame", "with", "a", "homeobox", "and", "a", "CAX", "repeat", ",", "and", "the", "open", "reading", "frame", "is", "predicted", "to", "encode", "a", "protein", "of", "51,659", "daltons."], ["When", "the", "homeodomain", "from", "HB24", "was", "compared", "to", "known", "mammalian", "and", "Drosophila", "homeodomains", "it", "was", "found", "to", "be", "only", "moderately", "conserved,", "but", "when", "it", "was", "compared", "to", "a", "highly", "diverged", "Drosophila", "homeodomain", ",", "H2.0,", "it", "was", "found", "to", "be", "80%", "identical."], ["The", "HB24", "mRNA", "was", "absent", "or", "present", "at", "low", "levels", "in", "normal", "B", "and", "T", "lymphocytes", ";", "however,", "with", "the", "appropriate", "activation", "signal", "HB24", "mRNA", "was", "induced", "within", "several", "hours", "even", "in", "the", "presence", "of", "cycloheximide", "."], ["Characterization", "of", "HB24", "expression", "in", "lymphoid", "and", "select", "developing", "tissues", "was", "performed", "by", "in", "situ", "hybridization", "."], ["Positive", "hybridization", "was", "found", "in", "thymus", ",", "tonsil", ",", "bone", "marrow", ",", "developing", "vessels", ",", "and", "in", "fetal", "brain", "."], ["HB24", "is", "likely", "to", "have", "an", "important", "role", "in", "lymphocytes", "as", "well", "as", "in", "certain", "developing", "tissues", "."]]}
{"ners": [[[16, 16, "DNA"], [4, 8, "DNA"], [24, 26, "DNA"], [19, 20, "DNA"]], [[31, 31, "DNA"], [2, 2, "DNA"], [4, 4, "DNA"], [30, 31, "DNA"]], [[23, 24, "RNA"], [14, 15, "cell_type"], [1, 2, "RNA"]], [[2, 2, "DNA"]], [], [[0, 0, "DNA"], [9, 9, "cell_type"]]], "sentences": [["There", "is", "a", "single", "methionine", "codon-initiated", "open", "reading", "frame", "of", "1,458", "nt", "in", "frame", "with", "a", "homeobox", "and", "a", "CAX", "repeat", ",", "and", "the", "open", "reading", "frame", "is", "predicted", "to", "encode", "a", "protein", "of", "51,659", "daltons."], ["When", "the", "homeodomain", "from", "HB24", "was", "compared", "to", "known", "mammalian", "and", "Drosophila", "homeodomains", "it", "was", "found", "to", "be", "only", "moderately", "conserved,", "but", "when", "it", "was", "compared", "to", "a", "highly", "diverged", "Drosophila", "homeodomain", ",", "H2.0,", "it", "was", "found", "to", "be", "80%", "identical."], ["The", "HB24", "mRNA", "was", "absent", "or", "present", "at", "low", "levels", "in", "normal", "B", "and", "T", "lymphocytes", ";", "however,", "with", "the", "appropriate", "activation", "signal", "HB24", "mRNA", "was", "induced", "within", "several", "hours", "even", "in", "the", "presence", "of", "cycloheximide", "."], ["Characterization", "of", "HB24", "expression", "in", "lymphoid", "and", "select", "developing", "tissues", "was", "performed", "by", "in", "situ", "hybridization", "."], ["Positive", "hybridization", "was", "found", "in", "thymus", ",", "tonsil", ",", "bone", "marrow", ",", "developing", "vessels", ",", "and", "in", "fetal", "brain", "."], ["HB24", "is", "likely", "to", "have", "an", "important", "role", "in", "lymphocytes", "as", "well", "as", "in", "certain", "developing", "tissues", "."]]}
...

For discontinuous dataset Share_2013, Share_2014 and CADEC, the data should like ( each sample has two lines, if the second line is empty means there is not entity. )

Abdominal cramps , flatulence , gas , bloating .
0,1 ADR|3,3 ADR|7,7 ADR|5,5 ADR

Cramps would start within 15 minutes of taking pill , even during meals .
0,0 ADR

...

We use code from https://github.com/daixiangau/acl2020-transition-discontinuous-ner to pre-process the data.

You can run the code by directly using

python train.py

The following output should be achieved

Save cache to caches/data_facebook/bart-large_conll2003_word.pt.                                                                                                        
max_len_a:0.6, max_len:10
In total 3 datasets:
        test has 3453 instances.
        train has 14041 instances.
        dev has 3250 instances.

The number of tokens in tokenizer  50265
50269 50274
input fields after batch(if batch size is 2):
        tgt_tokens: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 8]) 
        src_tokens: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 11]) 
        first: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 11]) 
        src_seq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) 
        tgt_seq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) 
target fields after batch(if batch size is 2):
        entities: (1)type:numpy.ndarray (2)dtype:object, (3)shape:(2,) 
        tgt_tokens: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 8]) 
        target_span: (1)type:numpy.ndarray (2)dtype:object, (3)shape:(2,) 
        tgt_seq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) 

training epochs started 2021-06-02-11-49-26-964889
Epoch 1/30:   0%|                                                         | 15/32430 [00:06<3:12:37,  2.80it/s, loss:6.96158

Some important python files are listed below

- BartNER
  - data
     - pipe.py # load and process data
  - model
     - bart.py # the model file
  - train.py  # the training file

The different Loaders in the data/pipe.py is meant to load data, and the data.BartNERPipe class is to process data, the loader should load data into a DataBundle object, you can mock the provided Loader to write your own loader, as long as your dataset has the following four fields, the BartNERPipe should be able to process it

- raw_words  # List[str]
    # ['AL-AIN', ',', 'United', 'Arab', 'Emirates', '1996-12-06']
- entities  # List[List[str]]
    # [['AL-AIN'], ['United', 'Arab', 'Emirates']]
- entity_tags  # List[str], the same length as entities
    # ['loc', 'loc']
- entity_spans # List[List[int]], the inner list must have an even number of ints, means the start(inclusive,开区间) and end(exclusive,开区间) of an entity segment
    # [[0, 1], [2, 5]] or for discontinous NER [[0, 1, 5, 7], [2, 3, 5, 7],...]

In order to help you reproduce the results, we have hardcoded the hyper-parameters for each dataset in the code, you can change them based on your need. We conduct all experiments in NVIDIA-3090(24G memory). Some known difficulties about the reproduction of this code: (1) Some datasets (nested and discontinous) will drop to 0 or near 0 F1 during training, please drop these results; (2) randomness will cause large performance variance for some datasets, please try to run multiple times.

We deeply understand how frustrating it can be if the results are hard to reproduce, we tried our best to make sure the results were at least reproducible in our equipment (Usually take average from at least five runs).

Owner
I am currently a PhD candidate in Fudan University.
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
[ECCV 2020] Gradient-Induced Co-Saliency Detection

Gradient-Induced Co-Saliency Detection Zhao Zhang*, Wenda Jin*, Jun Xu, Ming-Ming Cheng ⭐ Project Home » The official repo of the ECCV 2020 paper Grad

Zhao Zhang 35 Nov 25, 2022
Hands-On Machine Learning for Algorithmic Trading, published by Packt

Hands-On Machine Learning for Algorithmic Trading Hands-On Machine Learning for Algorithmic Trading, published by Packt This is the code repository fo

Packt 981 Dec 29, 2022
Official PyTorch implementation of GDWCT (CVPR 2019, oral)

This repository provides the official code of GDWCT, and it is written in PyTorch. Paper Image-to-Image Translation via Group-wise Deep Whitening-and-

WonwoongCho 135 Dec 02, 2022
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
This repo contains the code required to train the multivariate time-series Transformer.

Multi-Variate Time-Series Transformer This repo contains the code required to train the multivariate time-series Transformer. Download the data The No

Gregory Duthé 4 Nov 24, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi

XXQQ 42 Dec 09, 2022
A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

rydercalmdown 22 Apr 15, 2022
NAVER BoostCamp Final Project

CV 14조 final project Super Resolution and Deblur module Inference code & Pretrained weight Repo SwinIR Deblur 실행 방법 streamlit run WebServer/Server_SRD

JiSeong Kim 5 Sep 06, 2022
Deploy pytorch classification model using Flask and Streamlit

Deploy pytorch classification model using Flask and Streamlit

Ben Seo 1 Nov 17, 2021
Laser device for neutralizing - mosquitoes, weeds and pests

Laser device for neutralizing - mosquitoes, weeds and pests (in progress) Here I will post information for creating a laser device. A warning!! How It

Ildaron 1k Jan 02, 2023
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery

i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery This is a public code repository for the publication: i-SpaSP: Structured Neural Pruning

Cameron Ronald Wolfe 5 Nov 04, 2022
Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data

FTLNet_Pytorch Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data 1. Introduction This repo is an unofficial

1 Nov 04, 2020
Companion repository to the paper accepted at the 4th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities

Transfer learning approach to bicycle sharing systems station location planning using OpenStreetMap Companion repository to the paper accepted at the

Politechnika Wrocławska - repozytorium dla informatyków 4 Oct 24, 2022
Single object tracking and segmentation.

Single/Multiple Object Tracking and Segmentation Codes and comparison of recent single/multiple object tracking and segmentation. News 💥 AutoMatch is

ZP ZHANG 385 Jan 02, 2023