A Unified Generative Framework for Various NER Subtasks.

Related tags

Deep LearningBARTNER
Overview

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks.

Install the package in the requirements.txt, then use the following commands to install two other packages

pip install git+https://github.com/fastnlp/[email protected]
pip install git+https://github.com/fastnlp/fitlog

You need to put your data in the parallel folder of this repo

    - BARTNER/
        - train.py
        ...
    - data/
        - conll2003
            - train.txt
            - text.txt
            - dev.txt
        - en-ontonotes
            - ...
        - Share_2013
        - Share_2014
        - CADEC
        - en_ace04
        - en_ace05
        - genia

For the conll2003 and en-ontonotes you data in each split should like (The first column is words, the second column is tags. We assume the tag is the BIO-tagging)

LONDON B-LOC
1996-08-30 O

West B-MISC
Indian I-MISC
all-rounder O
Phil B-PER

For nested dataset en_ace04, en_ace05 and genia, the data should like (each line is a jsonline, contains ners and sentences keys.)

{"ners": [[[16, 16, "DNA"], [4, 8, "DNA"], [24, 26, "DNA"], [19, 20, "DNA"]], [[31, 31, "DNA"], [2, 2, "DNA"], [4, 4, "DNA"], [30, 31, "DNA"]], [[23, 24, "RNA"], [14, 15, "cell_type"], [1, 2, "RNA"]], [[2, 2, "DNA"]], [], [[0, 0, "DNA"], [9, 9, "cell_type"]]], "sentences": [["There", "is", "a", "single", "methionine", "codon-initiated", "open", "reading", "frame", "of", "1,458", "nt", "in", "frame", "with", "a", "homeobox", "and", "a", "CAX", "repeat", ",", "and", "the", "open", "reading", "frame", "is", "predicted", "to", "encode", "a", "protein", "of", "51,659", "daltons."], ["When", "the", "homeodomain", "from", "HB24", "was", "compared", "to", "known", "mammalian", "and", "Drosophila", "homeodomains", "it", "was", "found", "to", "be", "only", "moderately", "conserved,", "but", "when", "it", "was", "compared", "to", "a", "highly", "diverged", "Drosophila", "homeodomain", ",", "H2.0,", "it", "was", "found", "to", "be", "80%", "identical."], ["The", "HB24", "mRNA", "was", "absent", "or", "present", "at", "low", "levels", "in", "normal", "B", "and", "T", "lymphocytes", ";", "however,", "with", "the", "appropriate", "activation", "signal", "HB24", "mRNA", "was", "induced", "within", "several", "hours", "even", "in", "the", "presence", "of", "cycloheximide", "."], ["Characterization", "of", "HB24", "expression", "in", "lymphoid", "and", "select", "developing", "tissues", "was", "performed", "by", "in", "situ", "hybridization", "."], ["Positive", "hybridization", "was", "found", "in", "thymus", ",", "tonsil", ",", "bone", "marrow", ",", "developing", "vessels", ",", "and", "in", "fetal", "brain", "."], ["HB24", "is", "likely", "to", "have", "an", "important", "role", "in", "lymphocytes", "as", "well", "as", "in", "certain", "developing", "tissues", "."]]}
{"ners": [[[16, 16, "DNA"], [4, 8, "DNA"], [24, 26, "DNA"], [19, 20, "DNA"]], [[31, 31, "DNA"], [2, 2, "DNA"], [4, 4, "DNA"], [30, 31, "DNA"]], [[23, 24, "RNA"], [14, 15, "cell_type"], [1, 2, "RNA"]], [[2, 2, "DNA"]], [], [[0, 0, "DNA"], [9, 9, "cell_type"]]], "sentences": [["There", "is", "a", "single", "methionine", "codon-initiated", "open", "reading", "frame", "of", "1,458", "nt", "in", "frame", "with", "a", "homeobox", "and", "a", "CAX", "repeat", ",", "and", "the", "open", "reading", "frame", "is", "predicted", "to", "encode", "a", "protein", "of", "51,659", "daltons."], ["When", "the", "homeodomain", "from", "HB24", "was", "compared", "to", "known", "mammalian", "and", "Drosophila", "homeodomains", "it", "was", "found", "to", "be", "only", "moderately", "conserved,", "but", "when", "it", "was", "compared", "to", "a", "highly", "diverged", "Drosophila", "homeodomain", ",", "H2.0,", "it", "was", "found", "to", "be", "80%", "identical."], ["The", "HB24", "mRNA", "was", "absent", "or", "present", "at", "low", "levels", "in", "normal", "B", "and", "T", "lymphocytes", ";", "however,", "with", "the", "appropriate", "activation", "signal", "HB24", "mRNA", "was", "induced", "within", "several", "hours", "even", "in", "the", "presence", "of", "cycloheximide", "."], ["Characterization", "of", "HB24", "expression", "in", "lymphoid", "and", "select", "developing", "tissues", "was", "performed", "by", "in", "situ", "hybridization", "."], ["Positive", "hybridization", "was", "found", "in", "thymus", ",", "tonsil", ",", "bone", "marrow", ",", "developing", "vessels", ",", "and", "in", "fetal", "brain", "."], ["HB24", "is", "likely", "to", "have", "an", "important", "role", "in", "lymphocytes", "as", "well", "as", "in", "certain", "developing", "tissues", "."]]}
...

For discontinuous dataset Share_2013, Share_2014 and CADEC, the data should like ( each sample has two lines, if the second line is empty means there is not entity. )

Abdominal cramps , flatulence , gas , bloating .
0,1 ADR|3,3 ADR|7,7 ADR|5,5 ADR

Cramps would start within 15 minutes of taking pill , even during meals .
0,0 ADR

...

We use code from https://github.com/daixiangau/acl2020-transition-discontinuous-ner to pre-process the data.

You can run the code by directly using

python train.py

The following output should be achieved

Save cache to caches/data_facebook/bart-large_conll2003_word.pt.                                                                                                        
max_len_a:0.6, max_len:10
In total 3 datasets:
        test has 3453 instances.
        train has 14041 instances.
        dev has 3250 instances.

The number of tokens in tokenizer  50265
50269 50274
input fields after batch(if batch size is 2):
        tgt_tokens: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 8]) 
        src_tokens: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 11]) 
        first: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 11]) 
        src_seq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) 
        tgt_seq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) 
target fields after batch(if batch size is 2):
        entities: (1)type:numpy.ndarray (2)dtype:object, (3)shape:(2,) 
        tgt_tokens: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 8]) 
        target_span: (1)type:numpy.ndarray (2)dtype:object, (3)shape:(2,) 
        tgt_seq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) 

training epochs started 2021-06-02-11-49-26-964889
Epoch 1/30:   0%|                                                         | 15/32430 [00:06<3:12:37,  2.80it/s, loss:6.96158

Some important python files are listed below

- BartNER
  - data
     - pipe.py # load and process data
  - model
     - bart.py # the model file
  - train.py  # the training file

The different Loaders in the data/pipe.py is meant to load data, and the data.BartNERPipe class is to process data, the loader should load data into a DataBundle object, you can mock the provided Loader to write your own loader, as long as your dataset has the following four fields, the BartNERPipe should be able to process it

- raw_words  # List[str]
    # ['AL-AIN', ',', 'United', 'Arab', 'Emirates', '1996-12-06']
- entities  # List[List[str]]
    # [['AL-AIN'], ['United', 'Arab', 'Emirates']]
- entity_tags  # List[str], the same length as entities
    # ['loc', 'loc']
- entity_spans # List[List[int]], the inner list must have an even number of ints, means the start(inclusive,开区间) and end(exclusive,开区间) of an entity segment
    # [[0, 1], [2, 5]] or for discontinous NER [[0, 1, 5, 7], [2, 3, 5, 7],...]

In order to help you reproduce the results, we have hardcoded the hyper-parameters for each dataset in the code, you can change them based on your need. We conduct all experiments in NVIDIA-3090(24G memory). Some known difficulties about the reproduction of this code: (1) Some datasets (nested and discontinous) will drop to 0 or near 0 F1 during training, please drop these results; (2) randomness will cause large performance variance for some datasets, please try to run multiple times.

We deeply understand how frustrating it can be if the results are hard to reproduce, we tried our best to make sure the results were at least reproducible in our equipment (Usually take average from at least five runs).

Owner
I am currently a PhD candidate in Fudan University.
Deep Learning for humans

Keras: Deep Learning for Python Under Construction In the near future, this repository will be used once again for developing the Keras codebase. For

Keras 57k Jan 09, 2023
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
Model Zoo of BDD100K Dataset

Model Zoo of BDD100K Dataset

ETH VIS Group 200 Dec 27, 2022
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
Face recognition. Redefined.

FaceFinder Use a powerful CNN to identify faces in images! TABLE OF CONTENTS About The Project Built With Getting Started Prerequisites Installation U

BleepLogger 20 Jun 16, 2021
A Python Reconnection Tool for alt:V

altv-reconnect What? It invokes a reconnect in the altV Client Dev Console. You get to determine when your local client should reconnect when developi

8 Jun 30, 2022
An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"

RASP Setup Mac or Linux Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to insta

141 Jan 03, 2023
Keras udrl - Keras implementation of Upside Down Reinforcement Learning

keras_udrl Keras implementation of Upside Down Reinforcement Learning This is me

Eder Santana 7 Jan 24, 2022
IGCN : Image-to-graph convolutional network

IGCN : Image-to-graph convolutional network IGCN is a learning framework for 2D/3D deformable model registration and alignment, and shape reconstructi

Megumi Nakao 7 Oct 27, 2022
CNN visualization tool in TensorFlow

tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad

InFoCusp 778 Jan 02, 2023
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
Charsiu: A transformer-based phonetic aligner

Charsiu: A transformer-based phonetic aligner [arXiv] Note. This is a preview version. The aligner is under active development. New functions, new lan

jzhu 166 Dec 09, 2022
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
How to Train a GAN? Tips and tricks to make GANs work

(this list is no longer maintained, and I am not sure how relevant it is in 2020) How to Train a GAN? Tips and tricks to make GANs work While research

Soumith Chintala 10.8k Dec 31, 2022
reimpliment of DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation

DFANet This repo is an unofficial pytorch implementation of DFANet:Deep Feature Aggregation for Real-Time Semantic Segmentation log 2019.4.16 After 48

shen hui xiang 248 Oct 21, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
Code for paper: "Spinning Language Models for Propaganda-As-A-Service"

Spinning Language Models for Propaganda-As-A-Service This is the source code for the Arxiv version of the paper. You can use this Google Colab to expl

Eugene Bagdasaryan 16 Jan 03, 2023
Very Deep Convolutional Networks for Large-Scale Image Recognition

pytorch-vgg Some scripts to convert the VGG-16 and VGG-19 models [1] from Caffe to PyTorch. The converted models can be used with the PyTorch model zo

Justin Johnson 217 Dec 05, 2022
Streamlit Tutorial (ex: stock price dashboard, cartoon-stylegan, vqgan-clip, stylemixing, styleclip, sefa)

Streamlit Tutorials Install pip install streamlit Run cd [directory] streamlit run app.py --server.address 0.0.0.0 --server.port [your port] # http:/

Jihye Back 30 Jan 06, 2023