[email protected]) Boosting Co-teaching with Compression Regularization for Label Noise | PythonRepo" /> [email protected]) Boosting Co-teaching with Compression Regularization for Label Noise | PythonRepo">

([email protected]) Boosting Co-teaching with Compression Regularization for Label Noise

Overview

Nested-Co-teaching

([email protected]) Pytorch implementation of paper "Boosting Co-teaching with Compression Regularization for Label Noise"

[PDF]

If our project is helpful for your research, please consider citing :

@inproceedings{chen2021boosting, 
	  title={Boosting Co-teaching with Compression Regularization for Label Noise}, 
	  author={Chen, Yingyi and Shen, Xi and Hu, Shell Xu and Suykens, Johan AK}, 
	  booktitle={CVPR Learning from Limited and Imperfect Data (L2ID) workshop}, 
	  year={2021} 
	}

Our model can be learnt in a single GPU GeForce GTX 1080Ti (12G), this code has been tested with Pytorch 1.7.1

Table of Content

1. Toy Results

The nested regularization allows us to learn ordered representation which would be useful to combat noisy label. In this toy example, we aim at learning a projection from X to Y with noisy pairs. By adding nested regularization, the most informative recontruction is stored in the first few channels.

Baseline, same MLP Nested200, 1st channel
gif gif
Nested200,first 10 channels Nested200, first 100 channels
gif gif

2. Results on Clothing1M and Animal

Clothing1M [Xiao et al., 2015]

  • We provide average accuracy as well as the standard deviation for three runs (%) on the test set of Clothing1M [Xiao et al., 2015]. Results with “*“ are either using a balanced subset or a balanced loss.
Methods [email protected] result_ref/download
CE 67.2 [Wei et al., 2020]
F-correction [Patrini et al., 2017] 68.9 [Wei et al., 2020]
Decoupling [Malach and Shalev-Shwartz, 2017] 68.5 [Wei et al., 2020]
Co-teaching [Han et al., 2018] 69.2 [Wei et al., 2020]
Co-teaching+ [Yu et al., 2019] 59.3 [Wei et al., 2020]
JoCoR [Wei et al., 2020] 70.3 --
JO [Tanaka et al., 2018] 72.2 --
Dropout* [Srivastava et al., 2014] 72.8 --
PENCIL* [Yi and Wu, 2019] 73.5 --
MLNT [Li et al., 2019] 73.5 --
PLC* [Zhang et al., 2021] 74.0 --
DivideMix* [Li et al., 2020] 74.8 --
Nested* (Ours) 73.1 ± 0.3 model
Nested + Co-teaching* (Ours) 74.9 ± 0.2 model

ANIMAL-10N [Song et al., 2019]

  • We provide test set accuracy (%) on ANIMAL-10N [Song et al., 2019]. We report average accuracy as well as the standard deviation for three runs.
Methods [email protected] result_ref/download
CE 79.4 ± 0.1 [Song et al., 2019]
Dropout [Srivastava et al., 2014] 81.3 ± 0.3 --
SELFIE [Song et al., 2019] 81.8 ± 0.1 --
PLC [Zhang et al., 2021] 83.4 ± 0.4 --
Nested (Ours) 81.3 ± 0.6 model
Nested + Co-teaching (Ours) 84.1 ± 0.1 model

3. Datasets

Clothing1M

To download Clothing1M dataset [Xiao et al., 2015], please refer to here. Once it is downloaded, put it into ./data/. The structure of the file should be:

./data/Clothing1M
├── noisy_train
├── clean_val
└── clean_test

Generate two random Clothing1M noisy subsets for training after unzipping :

cd data/
# generate two random subsets for training
python3 clothing1M_rand_subset.py --name noisy_rand_subtrain1 --data-dir ./Clothing1M/ --seed 123

python3 clothing1M_rand_subset.py --name noisy_rand_subtrain2 --data-dir ./Clothing1M/ --seed 321

Please refer to data/gen_data.sh for more details.

ANIMAL-10N

To download ANIMAL-10N dataset [Song et al., 2019], please refer to here. It includes one training and one test set. Once it is downloaded, put it into ./data/. The structure of the file should be:

./data/Animal10N/
├── train
└── test

4. Train

4.1. Stage One : Training Nested Dropout Networks

We first train two Nested Dropout networks separately to provide reliable base networks for the subsequent stage. You can run the training of this stage by :

  • For training networks on Clothing1M (ResNet-18). You can also train baseline/dropout networks for comparisons. More details are provided in nested/run_clothing1m.sh.
cd nested/ 
# train one Nested network
python3 train_resnet.py --train-dir ../data/Clothing1M/noisy_rand_subtrain1/ --val-dir ../data/Clothing1M/clean_val/ --dataset Clothing1M --arch resnet18 --lrSchedule 5 --lr 0.02 --nbEpoch 30 --batchsize 448 --nested 100 --pretrained --freeze-bn --out-dir ./checkpoints/Cloth1M_nested100_lr2e-2_bs448_freezeBN_imgnet_model1 --gpu 0
  • For training networks on ANIMAL-10N (VGG-19+BN). You can also train baseline/dropout networks for comparisons. More details are provided in nested/run_animal10n.sh.
cd nested/ 
python3 train_vgg.py --train-dir ../data/Animal10N/train/ --val-dir ../data/Animal10N/test/ --dataset Animal10N --arch vgg19-bn --lr-gamma 0.2 --batchsize 128 --warmUpIter 6000 --nested1 100 --nested2 100 --alter-train --out-dir ./checkpoints_animal10n/Animal10N_alter_nested100_100_vgg19bn_lr0.1_warm6000_bs128_model1 --gpu 0

4.2. Stage Two : Fine-tuning with Co-teaching

In this stage, the two trained networks are further fine-tuned with Co-teaching. You can run the training of this stage by :

  • For fine-tuning with Co-teaching on Clothing1M (ResNet-18) :
cd co_teaching_resnet/ 
python3 main.py --train-dir ../data/Clothing1M/noisy_rand_subtrain1/ --val-dir ../data/Clothing1M/clean_val/ --dataset Clothing1M --lrSchedule 5 --nGradual 0 --lr 0.002 --nbEpoch 30 --warmUpIter 0 --batchsize 448 --freeze-bn --forgetRate 0.3 --out-dir ./finetune_ckpt/Cloth1M_nested100_lr2e-3_bs448_freezeBN_fgr0.3_pre_nested100_100 --resumePthList ../nested/checkpoints/Cloth1M_nested100_lr2e-2_bs448_imgnet_freezeBN_model1_Acc0.735_K12 ../nested/checkpoints/Cloth1M_nested100_lr2e-2_bs448_imgnet_freezeBN_model2_Acc0.733_K15 --nested 100 --gpu 0

The two Nested ResNet-18 networks trained in stage one can be downloaded here: ckpt1, ckpt2. We also provide commands for training Co-teaching from scratch for comparisons in co_teaching_resnet/run_clothing1m.sh.

  • For fine-tuning with Co-teaching on ANIMAL-10N (VGG-19+BN) :
cd co_teaching_vgg/ 
python3 main.py --train-dir ../data/Animal10N/train/ --val-dir ../data/Animal10N/test/ --dataset Animal10N --arch vgg19-bn --lrSchedule 5 --nGradual 0 --lr 0.004 --nbEpoch 30 --warmUpIter 0 --batchsize 128 --freeze-bn --forgetRate 0.2 --out-dir ./finetune_ckpt/Animal10N_alter_nested100_lr4e-3_bs128_freezeBN_fgr0.2_pre_nested100_100_nested100_100 --resumePthList ../nested/checkpoints_animal10n/new_code_nested/Animal10N_alter_nested100_100_vgg19bn_lr0.1_warm6000_bs128_model1_Acc0.803_K14 ../nested/checkpoints_animal10n/new_code_nested/Animal10N_alter_nested100_100_vgg19bn_lr0.1_warm6000_bs128_model2_Acc0.811_K14 --nested1 100 --nested2 100 --alter-train --gpu 0

The two Nested VGG-19+BN networks trained in stage one can be downloaded here: ckpt1, ckpt2. We also provide commands for training Co-teaching from scratch for comparisons in co_teaching_vgg/run_animal10n.sh.

5. Evaluation

To evaluate models' ability of combating with label noise, we compute classification accuracy on a provided clean test set.

5.1. Stage One : Nested Dropout Networks

Evaluation of networks derived from stage one are provided here :

cd nested/ 
# for networks on 
python3 test.py --test-dir ../data/Clothing1M/clean_test/ --dataset Clothing1M --arch resnet18 --resumePthList ./checkpoints/Cloth1M_nested100_lr2e-2_bs448_imgnet_freezeBN_model1_Acc0.735_K12 --KList 12 --gpu 0

More details can be found in nested/run_test.sh. Note that "_K12" in the model's name denotes the index of the optimal K, and the optimal number of channels for the model is actually 13 (nb of optimal channels = index of channel + 1).

5.2. Stage Two : Fine-tuning Co-teaching Networks

Evaluation of networks derived from stage two are provided as follows.

  • Networks trained on Clothing1M:
cd co_teaching_resnet/ 
python3 test.py --test-dir ../data/Clothing1M/clean_test/ --dataset Clothing1M --arch resnet18 --resumePthList ./finetune_ckpt/Cloth1M_nested100_lr2e-3_bs448_freezeBN_fgr0.3_pre_nested100_100_model2_Acc0.749_K24 --KList 24 --gpu 0

More details can be found in co_teaching_resnet/run_test.sh.

  • Networks trained on ANIMAL-10N:
cd co_teaching_vgg/ 
python3 test.py --test-dir ../data/Animal10N/test/ --dataset Animal10N --resumePthList ./finetune_ckpt/Animal10N_nested100_lr4e-3_bs128_freezeBN_fgr0.2_pre_nested100_100_nested100_100_model1_Acc0.842_K12 --KList 12 --gpu 0

More details can be found in co_teaching_vgg/run_test.sh.

Write-ups for the SwissHackingChallenge2021 CTF.

SwissHackingChallenge 2021 : Write-ups This repository contains a collection of my write-ups for challenges solved during the SwissHackingChallenge (S

Julien Béguin 3 Jun 07, 2021
Source code of RRPN ---- Arbitrary-Oriented Scene Text Detection via Rotation Proposals

Paper source Arbitrary-Oriented Scene Text Detection via Rotation Proposals https://arxiv.org/abs/1703.01086 News We update RRPN in pytorch 1.0! View

428 Nov 22, 2022
Face_mosaic - Mosaic blur processing is applied to multiple faces appearing in the video

動機 face_recognitionを使用して得られる顔座標は長方形であり、この座標をそのまま用いてぼかし処理を行った場合得られる画像は醜い。 それに対してモ

Yoshitsugu Kesamaru 6 Feb 03, 2022
Volume Control using OpenCV

Gesture-Volume-Control Volume Control using OpenCV Here i made volume control using Python and OpenCV in which we can control the volume of our laptop

Mudit Sinha 3 Oct 10, 2021
Convert scans of handwritten notes to beautiful, compact PDFs

Convert scans of handwritten notes to beautiful, compact PDFs

Matt Zucker 4.8k Jan 01, 2023
This is the open source implementation of the ICLR2022 paper "StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis"

StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image

Meta Research 840 Dec 26, 2022
Unofficial implementation of "TableNet: Deep Learning model for end-to-end Table detection and Tabular data extraction from Scanned Document Images"

TableNet Unofficial implementation of ICDAR 2019 paper : TableNet: Deep Learning model for end-to-end Table detection and Tabular data extraction from

Jainam Shah 243 Dec 30, 2022
SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition

SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition PDF Abstract Explainable artificial intelligence has been gaining attention

87 Dec 26, 2022
利用Paddle框架复现CRAFT

CRAFT-Paddle 利用Paddle框架复现CRAFT CRAFT 本项目基于paddlepaddle框架复现CRAFT,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: CRAFT: Character-Region Awarenes

QuanHao Guo 2 Mar 07, 2022
Random maze generator and solver

Maze Generator and Solver I wrote a maze generator that works with two commonly known algorithms: Depth First Search and Randomized Prims. Both of the

Daniel Pérez 10 Sep 23, 2022
7th place solution

SIIM-FISABIO-RSNA-COVID-19-Detection 7th place solution Validation: We used iterative-stratification with 5 folds (https://github.com/trent-b/iterativ

11 Jul 17, 2022
Image Smoothing and Blurring Using OpenCV

Image-Smoothing-and-Blurring-Using-OpenCV This repository contains codes for performing image smoothing and blurring using OpenCV. There are different

Happy N. Monday 3 Feb 15, 2022
Page to PAGE Layout Analysis Tool

P2PaLA Page to PAGE Layout Analysis (P2PaLA) is a toolkit for Document Layout Analysis based on Neural Networks. 💥 Try our new DEMO for online baseli

Lorenzo Quirós Díaz 180 Nov 24, 2022
Satoshi is a discord bot template in python using discord.py that allow you to track some live crypto prices with your own discord bot.

Satoshi ~ DiscordCryptoBot Satoshi is a simple python discord bot using discord.py that allow you to track your favorites cryptos prices with your own

Théo 2 Sep 15, 2022
This repo contains a script that allows us to find range of colors in images using openCV, and then convert them into geo vectors.

Vectorizing color range This repo contains a script that allows us to find range of colors in images using openCV, and then convert them into geo vect

Development Seed 9 Jul 27, 2022
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 91 Nov 22, 2022
An interactive document scanner built in Python using OpenCV

The scanner takes a poorly scanned image, finds the corners of the document, applies the perspective transformation to get a top-down view of the document, sharpens the image, and applies an adaptive

Kushal Shingote 1 Feb 12, 2022
Msos searcher - A half-hearted attempt at finding a magic square of squares

MSOS searcher A half-hearted attempt at finding (or rather searching) a MSOS (Magic Square of Squares) in the spirit of the Parker Square. Running I r

Niels Mündler 1 Jan 02, 2022
A novel region proposal network for more general object detection ( including scene text detection ).

DeRPN: Taking a further step toward more general object detection DeRPN is a novel region proposal network which concentrates on improving the adaptiv

Deep Learning and Vision Computing Lab, SCUT 151 Dec 12, 2022
【Auto】原神⭐钓鱼辅助工具 | 自动收竿、校准游标 | ✨您只需要抛出鱼竿,我们会帮你完成一切✨

原神钓鱼辅助工具 ✨ 作者正在努力重构代码中……会尽快带给大家一个更完美的脚本 ✨ 「您只需抛出鱼竿,然后我们会帮您搞定一切」 如果你觉得这个脚本好用,请点一个 Star ⭐ ,你的 Star 就是作者更新最大的动力 点击这里 查看演示视频 ✨ 欢迎大家在 Issues 中分享自己的配置文件 ✨ ✨

261 Jan 02, 2023