利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

Overview

写在前面

利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。

默认你已经完成了 yolov5的训练过程并得到了.pt模型权值文件。

本文目的仅是带着走通流程。

注意要对应yolov5和tensorrtx的版本。

  • ./yolov5包含yolov5训练以及模型初转化阶段的代码
  • ./model_process是将.wts模型转化为.engine模型的代码
  • ./detector是利用.engine模型进行前向推理阶段的代码

我的运行环境(注意OpenCV要选择适合你的visual studio的版本等问题):

win10

Visual Studio 2019

NVIDIA GeForce RTX 2060

opencv-3.4.3-vc14_vc15

cuda_10.2.89_441.22_win10

cudnn-10.2-windows10-x64-v7.6.5.32

TensorRT-7.0.0.11.Windows10.x86_64.cuda-10.2.cudnn7.6

cmake-3.21.2-windows-x86_64

上述环境的百度云(测试10、20系列可用):

链接:https://pan.baidu.com/s/1AyaloTzLap8X2hsJBvyeBw
提取码:dwr7

其他版本下载地址:

CUDA cudnn TensorRT CMake OpenCV

环境安装:

1、安装OpenCV并配置好环境变量

2、安装CUDA

一路默认。一般的安装路径为:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2

3、安装cudnn和TensorRT

cudnn和TensorRT的安装仅是将下载的对应版本的压缩包解压并复制*.h、*.lib、*.dll到CUDA的安装路径。

1 将cuDNN压缩包解压

2 将cuda\bin中的文件复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\bin

3 将cuda\include中的文件复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\include

4 将cuda\lib中的文件复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\lib

另外,

1 将TensorRT压缩包解压

2 将 TensorRT-7.0.0.11\include中头文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\include

3 将TensorRT-7.0.0.11\lib中所有lib文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\lib\x64

4 将TensorRT-7.0.0.11\lib中所有dll文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\bin

4、安装CMake软件备用

一、将训练阶段得到的.pt模型转化为.wts中间模型

把tensorrtx里面的yolov5\gen_wts.py加入到yolov5里面,执行

python gen_wts.py -w [.pt权值文件路径] 

runs\train\exp\weights\best.pt为训练过程生成的.pt模型,生成的best.wts会保存到同目录下,此best.wts待会会用到。

cuda版本每个电脑不一样

配置好的tensorrtx,包括Cmakelist.txt的设定以及dirent.h的配置。

若使用原作者的请参照tensorrtx源码https://github.com/wang-xinyu/tensorrtx ,配置过程中会遇到一些问题,挨个解决,问题不大。

1、在yolov5目录下新建build文件夹

2、修改CMakelist.txt

add_definitions(-DAPI_EXPORTS)

3、打开CMake

​​ generate后关闭

4、yolov5/include/dirent.h

​​ 也可使用我的配置好的

二、利用Cmake软件创建VS工程

修改CMakeLists.txt中此处为你的opencv安装路径。

配置好上方两个目录之后,点击Configure,根据你的环境选择配置,

点击Gnerate,警告可忽视,

现在关闭Cmake即可。

三、wts转化为engine

VS打开刚刚在bulid目录下创建的工程。

build处vs打开,生成

问题:我的模型只识别一个类,需要更改


cd {tensorrtx}/yolov5/

// update CLASS_NUM in yololayer.h if your model is trained on custom dataset

为1

生成项目。

把之前生成的best.wts复制到build\release目录里面

cmd里面运行:

.\test.exe -s .\best.wts best.engine s

运行成功在同文件夹下面会得到best.engine转换后的文件。之后的推理过程使用的都是这个文件。

测试:

.\yolov5.exe -d best.engine .\samples

至此,流程走完。

如果想要进一步封装,可以按照我的示例。

注释掉yolov5.cpp,并取消 几个文件的注释。重新生成项目。按照你的需求更改。

Owner
Helium
Helium
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022
This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper

DeepShift This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper, that aims to replace multiplicati

Mostafa Elhoushi 88 Dec 23, 2022
CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement

CBREN This is the Pytorch implementation for our IEEE TCSVT paper : CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhanceme

Zhao Hengrun 3 Nov 04, 2022
Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018)

CDAN Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018) New version: https://github.com/thuml/Transfer-Learning-Library Dataset

THUML @ Tsinghua University 363 Dec 20, 2022
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023
Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021.

PHDimGeneralization Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021. Overvie

Tolga Birdal 13 Nov 08, 2022
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."

alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi

Victor Shepardson 78 Dec 08, 2022
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator

CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator This is the official code repository for NeurIPS 2021 paper: CARMS: Categorica

Alek Dimitriev 1 Jul 09, 2022
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod

Ramana Sundararaman 76 Dec 06, 2022
A multi-scale unsupervised learning for deformable image registration

A multi-scale unsupervised learning for deformable image registration Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zha

ShuweiShao 2 Apr 13, 2022
social humanoid robots with GPGPU and IoT

Social humanoid robots with GPGPU and IoT Social humanoid robots with GPGPU and IoT Paper Authors Mohsen Jafarzadeh, Stephen Brooks, Shimeng Yu, Balak

0 Jan 07, 2022
GenshinMapAutoMarkTools - Tools To add/delete/refresh resources mark in Genshin Impact Map

使用说明 适配 windows7以上 64位 原神1920x1080窗口(其他分辨率后续适配) 待更新渊下宫 English version is to be

Zero_Circle 209 Dec 28, 2022
Graph parsing approach to structured sentiment analysis.

Fine-grained Sentiment Analysis as Dependency Graph Parsing This repository contains the code and datasets described in following paper: Fine-grained

Jeremy Barnes 36 Dec 12, 2022
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

Prune Truong 71 Nov 18, 2022
PyTorch-centric library for evaluating and enhancing the robustness of AI technologies

Responsible AI Toolbox A library that provides high-quality, PyTorch-centric tools for evaluating and enhancing both the robustness and the explainabi

24 Dec 22, 2022
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 01, 2022
I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining

I-SECRET This is the implementation of the MICCAI 2021 Paper "I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive con

13 Dec 02, 2022
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023