🎯 A comprehensive gradient-free optimization framework written in Python

Overview

Build Status MIT License

Solid is a Python framework for gradient-free optimization.

It contains basic versions of many of the most common optimization algorithms that do not require the calculation of gradients, and allows for very rapid development using them.

It's a very versatile library that's great for learning, modifying, and of course, using out-of-the-box.

See the detailed documentation here.


Current Features:


Usage:

  • pip install solidpy
  • Import the relevant algorithm
  • Create a class that inherits from that algorithm, and that implements the necessary abstract methods
  • Call its .run() method, which always returns the best solution and its objective function value

Example:

from random import choice, randint, random
from string import lowercase
from Solid.EvolutionaryAlgorithm import EvolutionaryAlgorithm


class Algorithm(EvolutionaryAlgorithm):
    """
    Tries to get a randomly-generated string to match string "clout"
    """
    def _initial_population(self):
        return list(''.join([choice(lowercase) for _ in range(5)]) for _ in range(50))

    def _fitness(self, member):
        return float(sum(member[i] == "clout"[i] for i in range(5)))

    def _crossover(self, parent1, parent2):
        partition = randint(0, len(self.population[0]) - 1)
        return parent1[0:partition] + parent2[partition:]

    def _mutate(self, member):
        if self.mutation_rate >= random():
            member = list(member)
            member[randint(0,4)] = choice(lowercase)
            member = ''.join(member)
        return member


def test_algorithm():
    algorithm = Algorithm(.5, .7, 500, max_fitness=None)
    best_solution, best_objective_value = algorithm.run()

Testing

To run tests, look in the tests folder.

Use pytest; it should automatically find the test files.


Contributing

Feel free to send a pull request if you want to add any features or if you find a bug.

Check the issues tab for some potential things to do.

Comments
  • Run flake8 in warning only mode on Python 2 and 3

    Run flake8 in warning only mode on Python 2 and 3

    This will help us find and fix the Python 3 syntax errors (print_function, etc.) A step towards the resolution of https://github.com/100/Solid/issues/6

    opened by cclauss 6
  • Simulated annealing: bug in run method

    Simulated annealing: bug in run method

    Description of the bug

    The run() method of the SimulatedAnnealing class has a bug when the annealing method does not find a better state than the initial one.

    When does it happens

    The bug happens when the annealing algorithm fails to find a better state than the initial one. This can happen when the maximum number of steps is low or when the initial guess is already very good.

    What is the current behaviour

    The tuple returned by the run() method is (None, cost_of_initial_state).

    How to fix

    Add the line

    self.best_state = deepcopy(self.current_state)
    

    between L142 and L143.

    opened by nelimee 0
  • Correction of EA and GA for nondeterministic fitness functions

    Correction of EA and GA for nondeterministic fitness functions

    Correction of an issue that occurs when the fitness function is nondeterministic (shuffled cross-validation for example). In the _select_n method, the total fitness is computed according to the stored fitnesses, but the probs variable is computed according to recalculated fitness values. This slight change makes the method use the stored fitnesses at each time, which solves the problem. This also makes the method run much faster (especially when the fitness function has a high complexity) by removing unnecessary calls to _fitness.

    opened by miraaitsaada 0
  • More Algorithms

    More Algorithms

    Of course, more algorithms are always great.

    Some suggestions:

    • Coordinate descent
    • Ant colony optimization
    • Differential evolution
    • Cuckoo search
    • Cross-entropy method
    enhancement help wanted 
    opened by 100 0
  • Numerical Stabilitity

    Numerical Stabilitity

    It would be good to find all of the instances where the algorithms may be unstable and handle these cases appropriately (such as overflow). Some cases are handled, but there are probably more.

    bug help wanted 
    opened by 100 0
  • Better Testing?

    Better Testing?

    Currently, the testing just makes sure that the algorithm runs without error on a toy problem.

    It would be nice to do something more akin to unit testing, but I'm not quite sure how to do it in this situation since a lot of the testable functionality is provided by the user.

    enhancement help wanted question 
    opened by 100 0
Releases(0.11)
Python Wrapper for Embree

pyembree Python Wrapper for Embree Installation You can install pyembree (and embree) via the conda-forge package. $ conda install -c conda-forge pyem

Anthony Scopatz 67 Dec 24, 2022
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Seonghyeon Nam 146 Nov 25, 2022
Kinetics-Data-Preprocessing

Kinetics-Data-Preprocessing Kinetics-400 and Kinetics-600 are common video recognition datasets used by popular video understanding projects like Slow

Kaihua Tang 7 Oct 27, 2022
How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach

EV-charging-impact This repository contains the code that has been used for the Queue modelling for the paper "How will electric vehicles affect traff

7 Nov 30, 2022
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

[ICLR 2022] Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity by Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elen

VITA 18 Dec 31, 2022
Simple implementation of OpenAI CLIP model in PyTorch.

It was in January of 2021 that OpenAI announced two new models: DALL-E and CLIP, both multi-modality models connecting texts and images in some way. In this article we are going to implement CLIP mod

Moein Shariatnia 226 Jan 05, 2023
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
3D Avatar Lip Syncronization from speech (JALI based face-rigging)

visemenet-inference Inference Demo of "VisemeNet-tensorflow" VisemeNet is an audio-driven animator centric speech animation driving a JALI or standard

Junhwan Jang 17 Dec 20, 2022
Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Demetri Pananos 9 Oct 04, 2022
PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 906 Jan 04, 2023
🔊 Audio and fastai v2

Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe

152 Dec 28, 2022
2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

Aigege 8 Mar 31, 2022
A robust camera and Lidar fusion based velocity estimator to undistort the pointcloud.

Lidar with Velocity A robust camera and Lidar fusion based velocity estimator to undistort the pointcloud. related paper: Lidar with Velocity : Motion

ISEE Research Group 164 Dec 30, 2022
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
Assessing syntactic abilities of BERT

BERT-Syntax Assesing the syntactic abilities of BERT. What Evaluate Google's BERT-Base and BERT-Large models on the syntactic agreement datasets from

Yoav Goldberg 147 Aug 02, 2022
MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets)

MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets) Using mixup data augmentation as reguliraztion and tuning the hyper par

Bhanu 2 Jan 16, 2022
Deep Learning pipeline for motor-imagery classification.

BCI-ToolBox 1. Introduction BCI-ToolBox is deep learning pipeline for motor-imagery classification. This repo contains five models: ShallowConvNet, De

DongHee 18 Oct 31, 2022
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022