An educational tool to introduce AI planning concepts using mobile manipulator robots.

Overview

JEDAI Explains Decision-Making AI

Virtual Machine Image

The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is available here: https://bit.ly/2WccU4K

To setup the system manually, you can use the steps given below:

Tutorial

A short video tutorial on how to use JEDAI is available here: https://bit.ly/3BmQugi

Running JEDAI

Use this command to start JEDAI from the JEDAI source directory (~/JEDAI/ in VM Image).

./start_jedai.sh

Alternatively execute this command:

python3 manage.py runserver

The output of this command includes a link to the development server hosting the frontend.

You can stop the execution anytime using this command from the JEDAI source directory (~/JEDAI/ in VM Image):

./stop_jedai.sh

Installing JEDAI on a new system

Requirements

  • Ubuntu 18.04
  • Python 2 and 3
  • Validate: https://github.com/KCL-Planning/VAL
    1. Retrieve and enter the repo:

      git clone https://github.com/KCL-Planning/VAL

      cd VAL

    2. Build the binary:

      ./scripts/linux/build_linux64.sh all Release

      • This will put Validate in <PARENT_DIR>/VAL/build/linux64/Release/bin

NOTE: JEDAI is tested extensively with Chromium (including Edge, Vivaldi, and Google Chrome). Support on other browsers is not guaranteed.

Setup

  1. Retrieve the TMP_Merged submodule by running the following in the project root (unless you already have TMP_Merged somewhere else on your system and want to use that, in which case you can try a symlink):

    git clone https://github.com/AAIR-lab/Anytime-Task-and-Motion-Policies.git TMP_Merged

    1. You must then install the dependencies for the submodule (this will probably take a while):

      bash TMP_Merged/install_tmp_dependencies.sh

    2. Also make sure to check out the correct branch of the submodule:

      cd TMP_Merged

      git checkout origin/TMP_JEDAI

  2. Install the web framework:

    pip3 install django

  3. Install the YAML library:

    pip3 install PyYAML

  4. Install the PDDL library:

    pip3 install pddlpy

    • If you get an error while running the code about a missing module named __builtin__ in the antlr4 library, then running this should help:

      pip3 install antlr4-python3-runtime==4.7

  5. Install the imaging library:

    pip3 install Pillow

  6. Check that PYTHON_2_PATH and VAL_PATH in config.py are pointing to the corresponding binaries on your system.

You are required to submit a domain and problem file, as well as a .dae environment file. See the test_domains directory for examples.

TMP submodule

After installing its dependencies, the TMP submodule should work out of the box, with environments popping up and giving a demonstration of successful plans. If you get any strange import errors from TMP despite packages seeming to be installed correctly, double-check your all your environment variables (especially if using an IDE like PyCharm).

Contributors

Trevor Angle
Naman Shah
Kiran Prasad
Pulkit Verma
Amruta Tapadiya
Kyle Atkinson
Chirav Dave
Judith Rosenke
Rushang Karia
Siddharth Srivastava

Owner
Autonomous Agents and Intelligent Robots
ASU research group focusing on well-founded and reliable assistive AI systems
Autonomous Agents and Intelligent Robots
Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction

Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction. arxiv This repository contains python scripts for tr

12 Dec 12, 2022
This is code of book "Learn Deep Learning with PyTorch"

深度学习入门之PyTorch Learn Deep Learning with PyTorch 非常感谢您能够购买此书,这个github repository包含有深度学习入门之PyTorch的实例代码。由于本人水平有限,在写此书的时候参考了一些网上的资料,在这里对他们表示敬意。由于深度学习的技术在

Xingyu Liao 2.5k Jan 04, 2023
🔊 Audio and fastai v2

Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe

152 Dec 28, 2022
Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback

CoSMo.pytorch Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback, Seungmin Lee*, Dongwan Kim*, Bohyung

Seung Min Lee 54 Dec 08, 2022
Joint Learning of 3D Shape Retrieval and Deformation, CVPR 2021

Joint Learning of 3D Shape Retrieval and Deformation Joint Learning of 3D Shape Retrieval and Deformation Mikaela Angelina Uy, Vladimir G. Kim, Minhyu

Mikaela Uy 38 Oct 18, 2022
​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C

98 Nov 15, 2022
A curated list of awesome Machine Learning frameworks, libraries and software.

Awesome Machine Learning A curated list of awesome machine learning frameworks, libraries and software (by language). Inspired by awesome-php. If you

Joseph Misiti 57.1k Jan 03, 2023
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

Jiachen Xu 5 Jul 14, 2022
Ascend your Jupyter Notebook usage

Jupyter Ascending Sync Jupyter Notebooks from any editor About Jupyter Ascending lets you edit Jupyter notebooks from your favorite editor, then insta

Untitled AI 254 Jan 08, 2023
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022
Normal Learning in Videos with Attention Prototype Network

Codes_APN Official codes of CVPR21 paper: Normal Learning in Videos with Attention Prototype Network (https://arxiv.org/abs/2108.11055) Overview of ou

11 Dec 13, 2022
PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021.

GCResNet PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021. The code will

11 May 19, 2022
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Dataset Cartography Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020. This repository cont

AI2 125 Dec 22, 2022
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
ToFFi - Toolbox for Frequency-based Fingerprinting of Brain Signals

ToFFi Toolbox This repository contains "before peer review" version of the software related to the preprint of the publication ToFFi - Toolbox for Fre

4 Aug 31, 2022
Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication"

NFFT4ANOVA Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication" This package uses th

Theresa Wagner 1 Aug 10, 2022
Lipschitz-constrained Unsupervised Skill Discovery

Lipschitz-constrained Unsupervised Skill Discovery This repository is the official implementation of Seohong Park, Jongwook Choi*, Jaekyeom Kim*, Hong

Seohong Park 17 Dec 18, 2022
Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Ceph.

Project Aquarium Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Cep

Aquarist Labs 73 Jul 21, 2022