Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Overview

Object Dataset Tools

Introduction

This repository contains pure python scripts to create object masks, bounding box labels, and 3D reconstructed object mesh (.ply) for object sequences filmed with an RGB-D camera. This project can prepare training and testing data for various deep learning projects such as 6D object pose estimation projects singleshotpose, and many object detection (e.g., faster rcnn) and instance segmentation (e.g., mask rcnn) projects. Ideally, if you have realsense cameras and have some experience with MeshLab or Blender, creating your customized dataset should be as easy as executing a few command line arguments.

This codes in this repository implement a raw 3D model acquisition pipeline through aruco markers and ICP registration. The raw 3D model obtained needs to be processed and noise-removed in a mesh processing software. After this step, there are functions to generate required labels in automatically.

The codes are currently written for a single object of interest per frame. They can be modified to create a dataset that has several items within a frame.

cover mask

Installation

Installation of this repository has been tested on a fresh install of Ubuntu 16.04 with Python 2.7, but should be compatible with Python 3 as well. Installations on a wide range of intel realsense drivers and their python wrappers are included.

Create dataset on customized items

1. Preparation

Color print the pdf with the correctly sized aruco markers (with ID 1-13) in the arucomarkers folder. Affix the markers surrounding the object of interest, as shown in the picture, make sure that you don't have markers with dulplicate IDS .

BackFlow

2. Record an object sequence

Option 1: Record with a realsense camera (SR300 perfered)

The script is provided to record an object video sequence using a compatible realsense camera. Use record.py for legacy models and record2.py for librealsense SDK 2.0:

python record.py LINEMOD/OBJECTNAME

e.g.,

python record.py LINEMOD/sugar

to record a sequence of a sugar box. By default, the script records for 40 seconds after a countdown of 5. You can change the recording interval or exit the recording by pressing "q". Please steadily move the camera to get different views of the object while maintaining that 2-3 markers are within the field of view of the camera at any time.

Note that the project assumes all sequences are saved under the folder named "LINEMOD", use other folder names will cause an error to occur.

If you use record.py to create your sequence, color images, depth aligned to color images, and camera parameters will be automatically saved under the directory of the sequence.

Option 2: Use an existing sequence or record with other cameras

If you are using other cameras, please put color images (.jpg) in a folder named "JPEGImages" and the aligned depth images (uint16 pngs interpolated over a 8m range) in the "depth" folder. Please note that the algorithm assumes the depth images to be aligned to color images. Name your color images in sequential order from 0.jpg, 1.jpg ... 600.jpg and the corresponding depth images as 0.png ... 600.png, you should also create a file intrinsics.json under the sequence directory and manually input the camera parameters in the format like below:

{"fx": 614.4744262695312, "fy": 614.4745483398438, "height": 480, "width": 640, "ppy": 233.29214477539062, "ppx": 308.8282470703125, "ID": "620201000292"}

If you don't know your camera's intrinsic, you can put a rough estimation in. All parameters required are fx, fy, cx, cy, where commonly fx = fy and equals to the width of the image and cx and cy is the center of the image. For example, for a 640 x 480 resolution image, fx, fy = 640, cx = 320, cy = 240.

An example sequence can be download HERE, create a directory named "LINEMOD", unzip the example sequence, and put the extracted folder (timer) under LINEMOD.

3. Obtain frame transforms

Compute transforms for frames at the specified interval (interval can be changed in config/registrationParameters) against the first frame, save the transforms(4*4 homogenous transforms) as a numpy array (.npy).

python compute_gt_poses.py LINEMOD/sugar

4. Register all frames and create a mesh for the registered scene.

python register_scene.py LINEMOD/sugar

A raw registeredScene.ply will be saved under the specified directory (e.g., LINEMOD/sugar). The registeredScene.ply is a registered pointcloud of the scene that includes the table top, markers, and any other objects exposed during the scanning, with some level of noise removal. The generated mesh looks something like this and requires manual processing in step 5:

BackFlow

Alternatively, you can try skipping all manual efforts by trying register_segmented instead of register_scene.

python register_segmented.py LINEMOD/sugar

By default, register_segmented attempts to removes all unwanted backgrounds and performs surface reconstruction that converts the registered pointcloud into a triangular mesh. If MESHING is set to false, the script will only attempt to remove background and auto-complete the unseen bottom with a flat surface (If FILLBOTTOM is set to true), and you will need to do step 5.

However, register_segmented may fail as it uses some ad hoc methods for segmenting the background, therefore you may need to tune some parameters for it to work with your object. The most important knob to tune is "MAX_RADIUS", which cuts off any depth reading whose Euclidean distance to the center of the aruco markers observed is longer than the value specified. This value is currently set at 0.2 m, if you have a larger object, you may need to increase this value to not cut off parts of your object. Result from running register_segmented looks something like this:

BackFlow

5. Process the registered pointcloud manually (Optional)

(03/03/2019) You can skip step 5 if you are satisfied with the result from running register_segmented.

The registered pointcloud needs to be processed to

  1. Remove background that is not of interest,
  2. Perform surface reconstruction and complete the missing side or vice versa,
  3. Process the reconstructed mesh (you may need to cut parts off and recomplete the missing side),
  4. Make sure that the processed mesh is free of ANY isolated noise.

The end product is a triangular mesh instead of the registered pointcloud generated by the algorithm.

You may find these YouTube tutorials useful: Point cloud to mesh conversion, Point Cloud to Mesh Reconstruction (MeshLab), and this very basic one I recorded.

If you are creating the mesh as a by-product to obtain image masks, or use it for projects like singleshotpose. Only the exact mesh geometry is needed while the appearance is not useful. It's therefore acceptable to "close holes" as shown in the video for planar areas. Also, for symmetrical objects, complete the shape manually by symmetry. If you need the exact texture information for the missing side, you will need to film another sequence exposing the missing side and manually align 2 pointclouds.

6. Create image masks and label files

When you have completed step 1-4 for all customized objects, run

python create_label_files.py all

or

python create_label_files.py LINEMOD/sugar

This step creates a new mesh named foldername.ply (e.g., sugar.ply) whose AABB is centered at the origin and are the same dimensions as the OBB. It also produces image masks (saved under mask), 4 x 4 homogenious transforms in regards to the new mesh (saved under transforms), as well as labels files (saved under labels) which are projections of the 3D bounding box of the object onto the 2D images. The mask files can be used for training and testing purposes for a deep learning project (e.g., mask-rcnn)

Inspect the correctness of the created 3D bounding boxes and masks visually by running:

python inspectMasks.py LINEMOD/sugar

(Optional) Create additional files required by singleshotpose

If you create the mesh file for singleshot pose, you need to open those new mesh files in meshlab and save them again by unchecking the binary format option. Those meshes are used by singleshotpose for evaluation and pose estimation purpose, and singleshotpose cannot read mesh that is binary encoded.

Masks and labels created in step 6 are compatible with singleshotpose. Currently, class labels are assigned in a hacky way (e.g., by the order the folder is grabbed among all sequence folders), if you call create_label for each folder they will be assigned the same label, so please read the printout and change class label manually in create_label_files.py.

In addition, you need to create train and test images

python makeTrainTestfiles.py

and create other required path files

For each of the customized object, create an objectname.data file in the cfg folder

To get the object scale(max vertice distance), you can run

python getmeshscale.py

This should be everything you need for creating a customized dataset for singleshotpose, please don't forget to update the camera calibration parameters in singleshotpose as well.

(Optional) Create bounding box labels for object detection projects

After you complete step 6 (generated image masks). Run:

python get_BBs.py

This creates annotations.csv that contains class labels and bounding box information for all images under LINEMOD folder.

If you encounter any problems with the code, want to report bugs, etc. please contact me at faninedinburgh[at]gmail[dot]com.

Short and long time series classification using convolutional neural networks

time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f

35 Oct 22, 2022
A GPT, made only of MLPs, in Jax

MLP GPT - Jax (wip) A GPT, made only of MLPs, in Jax. The specific MLP to be used are gMLPs with the Spatial Gating Units. Working Pytorch implementat

Phil Wang 53 Sep 27, 2022
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
Creative Applications of Deep Learning w/ Tensorflow

Creative Applications of Deep Learning w/ Tensorflow This repository contains lecture transcripts and homework assignments as Jupyter Notebooks for th

Parag K Mital 1.5k Dec 30, 2022
Deep Q-learning for playing chrome dino game

[PYTORCH] Deep Q-learning for playing Chrome Dino

Viet Nguyen 68 Dec 05, 2022
Cascaded Pyramid Network (CPN) based on Keras (Tensorflow backend)

ML2 Takehome Project Reimplementing the paper: Cascaded Pyramid Network for Multi-Person Pose Estimation Dataset The model uses the COCO dataset which

Vo Van Tu 1 Nov 22, 2021
LogAvgExp - Pytorch Implementation of LogAvgExp

LogAvgExp - Pytorch Implementation of LogAvgExp for Pytorch Install $ pip instal

Phil Wang 31 Oct 14, 2022
Code release for Universal Domain Adaptation(CVPR 2019)

Universal Domain Adaptation Code release for Universal Domain Adaptation(CVPR 2019) Requirements python 3.6+ PyTorch 1.0 pip install -r requirements.t

THUML @ Tsinghua University 229 Dec 23, 2022
Anomaly Detection Based on Hierarchical Clustering of Mobile Robot Data

We proposed a new approach to detect anomalies of mobile robot data. We investigate each data seperately with two clustering method hierarchical and k-means. There are two sub-method that we used for

Zekeriyya Demirci 1 Jan 09, 2022
GyroSPD: Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices

GyroSPD Code for the paper "Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices" accepted at NeurIPS 2021. Re

Federico Lopez 12 Dec 12, 2022
A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders Are Scalable Vision Learners A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementati

Aritra Roy Gosthipaty 59 Dec 10, 2022
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

105 Dec 23, 2022
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023
A large-scale face dataset for face parsing, recognition, generation and editing.

CelebAMask-HQ [Paper] [Demo] CelebAMask-HQ is a large-scale face image dataset that has 30,000 high-resolution face images selected from the CelebA da

switchnorm 1.7k Dec 26, 2022
Qlib is an AI-oriented quantitative investment platform

Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.

Microsoft 10.1k Dec 30, 2022
A Dataset for Direct Quotation Extraction and Attribution in News Articles.

DirectQuote - A Dataset for Direct Quotation Extraction and Attribution in News Articles DirectQuote is a corpus containing 19,760 paragraphs and 10,3

THUNLP-MT 9 Sep 23, 2022
TagLab: an image segmentation tool oriented to marine data analysis

TagLab: an image segmentation tool oriented to marine data analysis TagLab was created to support the activity of annotation and extraction of statist

Visual Computing Lab - ISTI - CNR 49 Dec 29, 2022
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.

An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear

Simon Blanke 422 Jan 04, 2023
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics ๐ŸŒŠ ๐ŸŒŠ ๐ŸŒŠ together with Finite Differences, explicit time

Felix Kรถhler 4 Nov 12, 2022