Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Overview

Optimizers Visualized

Visualization of how different optimizers handle mathematical functions for optimization.

Contents

Installation of libraries

pip install -r requirements.txt

NOTE: The optimizers used in this project are the pre-written ones in the pytorch module.

Usage

python main.py

The project is designed to be interactive, making it easy for the user to change any default values simply using stdin.

Functions for optimization

Matyas' Function

This is a relatively simple function for optimization.

Source: https://en.wikipedia.org/wiki/File:Matyas_function.pdf

Himmelblau's Function

A complex function, with multiple global minimas.

Source: https://en.wikipedia.org/wiki/File:Himmelblau_function.svg

Visualization of optimizers

All optimizers were given 100 iterations to find the global minima, from a same starting point. Learning rate was set to 0.1 for all instances, except when using SGD for minimizing Himmelblau's function.

Stochastic Gradient Descent

The vanilla stochastic gradient descent optimizer, with no additional functionalities:

theta_t = theta_t - lr * gradient

SGD on Matyas' function

We can see that SGD takes an almost direct path downwards, and then heads towards the global minima.

SGD on Himmelblau's function

SGD on Himmelblau's function fails to converge even when the learning rate is reduced from 0.1 to 0.03.

It only converges when the learning rate is further lowered to 0.01, still overshooting during the early iterations.

Root Mean Square Propagation

RMSProp with the default hyperparameters, except the learning rate.

RMSProp on Matyas' function

RMSProp first reaches a global minima in one dimension, and then switches to minimizing another dimension. This can be hurtful if there are saddle points in the function which is to be minimized.

RMSProp on Himmelblau's function

By trying to minimize one dimension first, RMSProp overshoots and has to return back to the proper path. It then minimizes the next dimension.

Adaptive Moment Estimation

Adam optimizer with the default hyperparameters, except the learning rate.

Adam on Matyas' function

Due to the momentum factor and the exponentially weighted average factor, Adam shoots past the minimal point, and returns back.

Adam on Himmelblau's function

Adam slides around the curves, again mostly due to the momentum factor.

Links

Todos

  • Add more optimizers
  • Add more complex functions
  • Test out optimizers in saddle points
Owner
Gautam J
19 | AI | ML | DL
Gautam J
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper

Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t

11 Aug 29, 2022
Evolutionary Scale Modeling (esm): Pretrained language models for proteins

Evolutionary Scale Modeling This repository contains code and pre-trained weights for Transformer protein language models from Facebook AI Research, i

Meta Research 1.6k Jan 09, 2023
git《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D.

Pytorch Medical Segmentation Read Chinese Introduction:Here! Recent Updates 2021.1.8 The train and test codes are released. 2021.2.6 A bug in dice was

EasyCV-Ellis 618 Dec 27, 2022
Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Zhichun Guo 94 Dec 12, 2022
A TikTok-like recommender system for GitHub repositories based on Gorse

GitRec GitRec is the missing recommender system for GitHub repositories based on Gorse. Architecture The trending crawler crawls trending repositories

337 Jan 04, 2023
[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

SSUL - Official Pytorch Implementation (NeurIPS 2021) SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning Sun

Clova AI Research 44 Dec 27, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

[CVPRW 2021] - Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation

Anirudh S Chakravarthy 6 May 03, 2022
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
Generate images from texts. In Russian. In PaddlePaddle

ruDALL-E PaddlePaddle ruDALL-E in PaddlePaddle. Install: pip install rudalle_paddle==0.0.1rc1 Run with free v100 on AI Studio. Original Pytorch versi

AgentMaker 20 Oct 18, 2022
Hitters Linear Regression - Hitters Linear Regression With Python

Hitters_Linear_Regression Kullanacağımız veri seti Carnegie Mellon Üniversitesi'

AyseBuyukcelik 2 Jan 26, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
[AAAI2022] Source code for our paper《Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning》

SSVC The source code for paper [Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning] samples of the

7 Oct 26, 2022
Image data augmentation scheduler for albumentations transforms

albu_scheduler Scheduler for albumentations transforms based on PyTorch schedulers interface Usage TransformMultiStepScheduler import albumentations a

19 Aug 04, 2021
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
Official PyTorch implementation of "Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble" (NeurIPS'21)

Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble This is the code for reproducing the results of the paper Uncertainty-Bas

43 Nov 23, 2022
Complete-IoU (CIoU) Loss and Cluster-NMS for Object Detection and Instance Segmentation (YOLACT)

Complete-IoU Loss and Cluster-NMS for Improving Object Detection and Instance Segmentation. Our paper is accepted by IEEE Transactions on Cybernetics

290 Dec 25, 2022
A library for uncertainty representation and training in neural networks.

Epistemic Neural Networks A library for uncertainty representation and training in neural networks. Introduction Many applications in deep learning re

DeepMind 211 Dec 12, 2022
AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages

AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages This repository contains the code for the pa

Kelechi 40 Nov 24, 2022