Text Normalization(文本正则化)

Overview

Text Normalization(文本正则化)

任务描述:通过机器学习算法将英文文本的“手写”形式转换成“口语“形式,例如“6ft”转换成“six feet”等

实验结果

  1. XGBoost + bag-of-words: 0.99159
  2. XGBoost+Weights+rules:0.99002
  3. 进阶solve函数(使用6个output文件):0.98939
  4. 基本solve函数:0.98277
  5. RandomTree + Rules:0.95304
  6. XGboost:0.92605

参考github网址:

数据来源网址:

数据分析EDA网址(帮助快速理解数据特征):

提升点

1. 数据的不平衡性

对于平衡的数据,我们一般使用准确率作为一般的评估标准(accuracy),当类别不平衡时,准确率就具有迷惑性,而且意义不大。因此有以下几种主流评测标准

  • Receiver operating curve,计算ROC曲线面积(二分类,从PLAIN和非PLAIN)
  • Precision-recall curve,计算此曲线下的面积
  • Precision

- 简单通用的算法

阈值调整(threshold moving):将原本默认为0.5的阈值调整到 较少类别/(较少类别+较多类别)即可。使用现有的集成学习分类器,如随机森林或者xgboost,并调整分类阈值

- 对XGBoost模型数据的不平衡处理方法

通过正负样本的权重解决样本不均衡(一般分类中小样本量类别权重高,大样本类别权重低,再进行计算和建模

- 简单有效的方案

  1. 不对数据进行过采样和欠采样,但使用现有的集成学习模型,如随机森林,XGBoost(lGBM)
  2. 输出模型的预测概率,调整阈值得到最终结果
  3. 选择合适的评估标准,如precision,Recall
  4. 文本正则化中的任务是对测试集中的16个目标进行预测,训练集中的最大类别是PLAIN,为7353693,最小的类别为ADDRESS,为522。因此暂定PLAIN的权重为0.01,其余为1.(除去PLAIN,其余15个再做一次分类)

2. 超参数优化(时间复杂度,空间复杂度)

如何选择合适的超参数?不同模型会有不同的最优超参数组合,找到这组最优超参数大家是根据经验或者随机的方法,来尝试。但是其是有可能用数学或者机器学习的模型来解决模型本身超参数的选择问题

背景

  • 机器学习模型超参数调优一般被认为是一个黑盒优化问题,在调优过程中我们只能看到模型的输入与输出,不能获取模型训练过程中的梯度信息,也不能假设模型超参数和最终指标符合凸优化条件
  • 模型训练代价大,时间,金钱成本

自动调参方法

Grid search(网格搜索),Random search(随机搜索),Genetic algorithm(遗传算法),Paticle Swarm Optimization(粒子群优化),Bayesian Optimization(贝叶斯优化),TPE,SMAC等

  • Genetic algorithm和PSO是经典黑盒优化算法,归类为群体优化算法,不是特别适合模型超参数调优场景,因为其需要有足够多的初始样本点,并且优化效率不高**
  • Grid search很容易理解与实现,但是遍历所有的超参数组合来找到其中最优化的方案,对于连续值还需要等间距采样。实际上这30种组合不一定取得全局最优解,而且计算量很大很容易组合爆炸,并不是一种高效的参数调优方法。
  • Random search普遍被认为比Grid search效果好,虽然组合的超参数具有随机性,但是其出现效果可能特别差也可能特别好,在尝试次数和Grid search相同的情况下一般最值会更大,当然variance也更大但这不影响最终结果。

但是在计算机资源有限的情况下,Grid search与Random search不一定比建模工程师的经验要好

  • Bayesian Optimization
    适用场景:
    (1)需要优化的function计算起来非常费时费力,比如上面提到的神经网络的超参问题,每一次训练神经网络都是燃烧好多GPU的
    (2)你要优化的function没有导数信息

3. 可解释性工具(https://www.kaggle.com/learn/machine-learning-explainability)

Xgboost相对于线性模型在进行预测时往往有更好的精度,但是同时也失去了线性模型的可解释性。所以Xgboost通常被认为是黑箱模型。 经典方法是使用全局特征重要性评估

2017年,Lundberg和Lee的[论文]( [A Unified Approach to Interpreting Model Predictions.pdf](../文献阅读/A Unified Approach to Interpreting Model Predictions.pdf) )提出了SHAP值这一广泛适用的方法用来解释各种模型(分类以及回归),其中最大的受益者莫过于之前难以被理解的黑箱模型,如boosting和神经网络模型。

  1. 二分类,看下准确率,高的话
  2. 集成XGBoost,LGB,随机森林
  3. 可解释性,SHAP(SHAP值只能对特征进行分析)
  4. 去掉PLAIN看下效果,ROC

后续改进

  1. 将PLAIN的权值设置为0,训练结果:分数为0.98991 将PLAIN去除不进行预测,实验结果无法得到官方分数,并且实验是通过上下文单词(context)来作为单位进行训练,若去除PLAIN无法训练。因此只能通过将权值设置为0,查看各个种类的预测准确率是否高,但是可以查看对训练集的效果
Owner
Jason_Zhang
Jason_Zhang
SIGIR'22 paper: Axiomatically Regularized Pre-training for Ad hoc Search

Introduction This codebase contains source-code of the Python-based implementation (ARES) of our SIGIR 2022 paper. Chen, Jia, et al. "Axiomatically Re

Jia Chen 17 Nov 09, 2022
Rhasspy 673 Dec 28, 2022
Unsupervised intent recognition

INTENT author: steeve LAQUITAINE description: deployment pattern: currently batch only Setup & run git clone https://github.com/slq0/intent.git bash

sl 1 Apr 08, 2022
Module for automatic summarization of text documents and HTML pages.

Automatic text summarizer Simple library and command line utility for extracting summary from HTML pages or plain texts. The package also contains sim

Mišo Belica 3k Jan 08, 2023
Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense.

PythonTextObfuscator Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense. Requi

2 Aug 29, 2022
Implementation of TF-IDF algorithm to find documents similarity with cosine similarity

NLP learning Trying to learn NLP to use in my projects! Table of Contents About The Project Built With Getting Started Requirements Run Usage License

Faraz Farangizadeh 3 Aug 25, 2022
Twitter Sentiment Analysis using #tag, words and username

Twitter Sentment Analysis Web App using #tag, words and username to fetch data finds Insides of data and Tells Sentiment of the perticular #tag, words or username.

Kumar Saksham 26 Dec 25, 2022
An open-source NLP library: fast text cleaning and preprocessing.

An open-source NLP library: fast text cleaning and preprocessing

Iaroslav 21 Mar 18, 2022
Material for GW4SHM workshop, 16/03/2022.

GW4SHM Workshop Wednesday, 16th March 2022 (13:00 – 15:15 GMT): Presented by: Dr. Rhodri Nelson, Imperial College London Project website: https://www.

Devito Codes 1 Mar 16, 2022
CMeEE 数据集医学实体抽取

医学实体抽取_GlobalPointer_torch 介绍 思想来自于苏神 GlobalPointer,原始版本是基于keras实现的,模型结构实现参考现有 pytorch 复现代码【感谢!】,基于torch百分百复现苏神原始效果。 数据集 中文医学命名实体数据集 点这里申请,很简单,共包含九类医学

85 Dec 28, 2022
fastai ulmfit - Pretraining the Language Model, Fine-Tuning and training a Classifier

fast.ai ULMFiT with SentencePiece from pretraining to deployment Motivation: Why even bother with a non-BERT / Transformer language model? Short answe

Florian Leuerer 26 May 27, 2022
Klexikon: A German Dataset for Joint Summarization and Simplification

Klexikon: A German Dataset for Joint Summarization and Simplification Dennis Aumiller and Michael Gertz Heidelberg University Under submission at LREC

Dennis Aumiller 8 Jan 03, 2023
Nateve compiler developed with python.

Adam Adam is a Nateve Programming Language compiler developed using Python. Nateve Nateve is a new general domain programming language open source ins

Nateve 7 Jan 15, 2022
This project deals with a simplified version of a more general problem of Aspect Based Sentiment Analysis.

Aspect_Based_Sentiment_Extraction Created on: 5th Jan, 2022. This project deals with an important field of Natural Lnaguage Processing - Aspect Based

Naman Rastogi 4 Jan 01, 2023
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023
A demo for end-to-end English and Chinese text spotting using ABCNet.

ABCNet_Chinese A demo for end-to-end English and Chinese text spotting using ABCNet. This is an old model that was trained a long ago, which serves as

Yuliang Liu 45 Oct 04, 2022
2021 2학기 데이터크롤링 기말프로젝트

공지 주제 웹 크롤링을 이용한 취업 공고 스케줄러 스케줄 주제 정하기 코딩하기 핵심 코드 설명 + 피피티 구조 구상 // 12/4 토 피피티 + 스크립트(대본) 제작 + 녹화 // ~ 12/10 ~ 12/11 금~토 영상 편집 // ~12/11 토 웹크롤러 사람인_평균

Choi Eun Jeong 2 Aug 16, 2022
Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Ankur Dhuriya 10 Oct 13, 2022
NLP Text Classification

多标签文本分类任务 近年来随着深度学习的发展,模型参数的数量飞速增长。为了训练这些参数,需要更大的数据集来避免过拟合。然而,对于大部分NLP任务来说,构建大规模的标注数据集非常困难(成本过高),特别是对于句法和语义相关的任务。相比之下,大规模的未标注语料库的构建则相对容易。为了利用这些数据,我们可以

Jason 1 Nov 11, 2021
nlpcommon is a python Open Source Toolkit for text classification.

nlpcommon nlpcommon, Python Text Tool. Guide Feature Install Usage Dataset Contact Cite Reference Feature nlpcommon is a python Open Source

xuming 3 May 29, 2022