Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Overview

Explainability Requires Interactivity

This repository contains the code to train all custom models used in the paper Explainability Requires Interactivity as well as to create all static explanations (heat maps and generative). For our interactive framework, see the sister repositor.

Precomputed generative explanations are located at static_generative_explanations.

Requirements

Install the conda environment via conda env create -f env.yml (depending on your system you might need to change some versions, e.g. for pytorch, cudatoolkit and pytorch-lightning).

For some parts you will need the FairFace model, which can be downloaded from the authors' repo. You will only need the res34_fair_align_multi_7_20190809.pt file.

Training classification networks

CelebA dataset

You first need to download and decompress the CelebAMask-HQ dataset (or here). Then run the training with

python train.py --dset celeb --dset_path /PATH/TO/CelebAMask-HQ/ --classes_or_attr Smiling --target_path /PATH/TO/OUTPUT

/PATH/TO/FLOWERS102/ should contain a CelebAMask-HQ-attribute-anno.txt file and an CelebA-HQ-img directory. Any of the columns in CelebAMask-HQ-attribute-anno.txt can be used; in the paper we used Heavy_Makeup, Male, Smiling, and Young.

Flowers102 dataset

You first need to download and decompress the Flowers102 data. Then run the training with

python train.py --dset flowers102 --dset_path /PATH/TO/FLOWERS102/ --classes_or_attr 49-65 --target_path /PATH/TO/OUTPUT/

/PATH/TO/FLOWERS102/ should contain an imagelabels.mat file and an images directory. Classes 49 and 65 correspond to the "Oxeye daisy" and "California poppy", while 63 and 54 correspond to "Black-eyed Susan" and "Sunflower" as in the paper.

Generating heatmap explanations

Heatmap explanations are generated using the Captum library. After training, run explanations via

python static_exp.py --model_path /PATH/TO/MODEL.pt --img_path /PATH/TO/IMGS/ --model_name celeb --fig_dir /PATH/TO/OUTPUT/

/PATH/TO/IMGS/ contains (only) image files and can be omitted in order to run the default images exported by train.py. To run on FairFace, choose --model_name fairface and add --attr age or --attr gender. Other explanation methods can be easily added by modifying the explain_all function in static_exp.py. Explanations are saved to fig_dir. Only tested for the networks trained on the facial images data in the previous step, but any resnet18 with scalar output layer should work just as well.

Generating generative explanations

First, clone the original NVIDIA StyleGAN2-ada-pytorch repo. Make sure everything works as expected (e.g. run the getting started code). If the code is stuck at loading TODO, usually ctrl-C will let the model fall back to a smaller reference implementation which is good enough for our use case. Next, export the repo into your PYTHONPATH (e.g. via export PYTHONPATH=$PYTHONPATH:/PATH/TO/stylegan2-ada-pytorch/). To generate explanations, you will need to 0) train an image model (see above, or use the FairFace model); 1) create a dataset of latent codes + labels; 2) train a latent space logistic regression models; and 3) create the explanations. As each of the steps can be very slow, we split them up

Create labeled latent dataset

First, make sure to either train at least one image model as in the first step and/or download the FairFace model.

python generative_exp.py --phase 1 --attrs Smiling,ff-skin-color --base_dir /PATH/TO/BASE/ --generator_path /PATH/TO/STYLEGAN2.pkl --n_train 20000 --n_valid 5000

The base_dir is the directory where all files/sub-directories are stored and should be the same as the target_path from train.py (e.g., just .). It should contain e.g. the celeb-Smiling directory and the res34_fair_align_multi_7_20190809.pt file if using --attrs Smiling,ff-skin-color.

Train latent space model

After the first step, run

python generative_exp.py --phase 2 --attrs Smiling,ff-skin-color --base_dir /PATH/TO/BASE/ --epochs 50

with same base_dir and attrs.

Create generative explanations

Finally, you can generate generative explanations via

python generative_exp.py --phase 3 --base_dir /PATH/TO/BASE/ --eval_attr Smiling --generator_path /PATH/TO/STYLEGAN2.pkl --attrs Smiling,ff-skin-color --reconstruction_steps 1000 --ampl 0.09 --input_img_dir /PATH/TO/IMAGES/ --output_dir /PATH/TO/OUTPUT/

Here, eval_attr is the final evaluation model's class that you want to explain; attrs are the same as before, the directions in latent space; input_img_dir is a directory with (only) image files that are to be explained. Explanations are saved to output_dir.

Owner
Digital Health & Machine Learning
Digital Health & Machine Learning
Alpha-Zero - Telegram Group Manager Bot Written In Python Using Pyrogram

✨ Alpha Zero Bot ✨ Telegram Group Manager Bot + Userbot Written In Python Using

1 Feb 17, 2022
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
Official code for CVPR2022 paper: Depth-Aware Generative Adversarial Network for Talking Head Video Generation

📖 Depth-Aware Generative Adversarial Network for Talking Head Video Generation (CVPR 2022) 🔥 If DaGAN is helpful in your photos/projects, please hel

Fa-Ting Hong 503 Jan 04, 2023
Code from PropMix, accepted at BMVC'21

PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels This repository is the official implementation of Hard Sample Fil

6 Dec 21, 2022
Prml - Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

Pattern Recognition and Machine Learning (PRML) This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Patte

Gerardo Durán-Martín 1k Jan 07, 2023
A new data augmentation method for extreme lighting conditions.

Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l

Osama Mazhar 35 Nov 26, 2022
Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz 206 Jan 04, 2023
[ACL 2022] LinkBERT: A Knowledgeable Language Model 😎 Pretrained with Document Links

LinkBERT: A Knowledgeable Language Model Pretrained with Document Links This repo provides the model, code & data of our paper: LinkBERT: Pretraining

Michihiro Yasunaga 264 Jan 01, 2023
Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Bobby Cox 1 Nov 17, 2021
PyTorch implementation of GLOM

GLOM PyTorch implementation of GLOM, Geoffrey Hinton's new idea that integrates concepts from neural fields, top-down-bottom-up processing, and attent

Yeonwoo Sung 20 Aug 17, 2022
Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) Official Tensorflow implementation of Adverse Weather Image Trans

Jeong-gi Kwak 36 Dec 26, 2022
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

4 Mar 11, 2022
data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"

C2F-FWN data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer" (https://arxiv.org/abs/

EKILI 46 Dec 14, 2022
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021)

Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021) Zeyu Wang, Sherry Qiu, Nicole Feng, Holly Rushmeier, Leonard McMill

Zach Zeyu Wang 23 Dec 09, 2022
Code for the paper "Curriculum Dropout", ICCV 2017

Curriculum Dropout Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability dis

Pietro Morerio 21 Jan 02, 2022
Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo Block diagram of FCL-taco2, where the decode

Disong Wang 39 Sep 28, 2022
ADOP: Approximate Differentiable One-Pixel Point Rendering

ADOP: Approximate Differentiable One-Pixel Point Rendering Abstract: We present a novel point-based, differentiable neural rendering pipeline for scen

Darius Rückert 1.9k Jan 06, 2023
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022
Unofficial implementation of MUSIQ (Multi-Scale Image Quality Transformer)

MUSIQ: Multi-Scale Image Quality Transformer Unofficial pytorch implementation of the paper "MUSIQ: Multi-Scale Image Quality Transformer" (paper link

41 Jan 02, 2023