deployment of a hybrid model for automatic weapon detection/ anomaly detection for surveillance applications

Overview

Automatic Weapon Detection

Deployment of a hybrid model for automatic weapon detection/ anomaly detection for surveillance applications.

Stars Badge Forks Badge Pull Requests Badge Issues Badge GitHub contributors License   Badge


Loved the project? Please visit our Website


Literature Survey

Security is always a main concern in every domain, due to a rise in crime rate in a crowded event or suspicious lonely areas. Weapon detection and monitoring have major applications of computer vision to tackle various problems. Due to growing demand in the protection of safety, security and personal properties, needs and deployment of video surveillance systems can recognize and interpret the scene and anomaly events play a vital role in intelligence monitoring. We implemented weapon detection using a convolution neural network (CNN). Results are tabulated, both algorithms achieve good accuracy, but their application in real situations can be based on the trade-off between speed and accuracy. We surveyed various research evidences and proposed a detection framework which involves three phases detection of objects, recognition of detected objects and alarm system. Single learning based detection framework is used because of which high processing speed is achieved. Because dense features need only to be evaluated once rather than individually for each detector. For object detection a framework using a linear support vector machine classifier with histogram of oriented gradients features. Using a combination of ACF(Aggregated Channel Features) features and sp- LBP(Local binary pattern)features can provide a better trade-off between detection performance and system runtime. some techniques are used to post-process raw detection results. Uses shrinkage version of AdaBoost as the strong classifier and use decision trees as weak learners.To train the classifier, the procedure known as bootstrapping is applied . Shifu Zhou(researcher) et al suggested a method for detecting and locating anomalous activities in video sequences of crowded scenes. The key for method is the coupling of anomdescribon with a spatial-temporal Convolutional Neural Networks. This architecture allows us to capture features from both spatial and temporal dimensions by performing spatial-temporal convolutions, thereby, both the appearance and motion information encoded in continuous frames are extracted Two criterions are used for evaluating anomaly detection accuracy namely a frame level criterion and a pixel level criterion. Motion pattern and FRP (False positive rates) are calculated for evaluating performance. And DR(Detection Rate) corresponds to the successful detection rate of the anomalies happening at EER(Equal Error Rate). We also surveyed from various research evidences that One of the main challenges is to detect anomalies both in time and space domains. This implies to find out which frames that anomalies occur and to localize regions that generate the anomalies within these frames. This model extracts features from both the spatial and the temporal dimensions by performing. 3D convolutions, is achieved by convolving a 3D kernel to the cube formed by stacking multiple contiguous frames together. The issues are that , accurate recognition of actions is a highly challenging task due to cluttered backgrounds, occlusions, and viewpoint variations perform 3D convolution in the convolutional layers of CNNs so that discriminative features along both the spatial and the temporal dimensions are captured.3D convolution is achieved by stacking multiple contiguous frames together. The developed 3D CNN model was trained using a supervised algorithm , and it requires a large number of labelled samples. we propose a novel end-to-end model which integrates the one-class Support Vector Machine (SVM) into Convolutional Neural Network (CNN). Specifically, the robust loss function derived from the one-class SVM is proposed to optimize the parameters of this model. We proposed a learning model for weapon detection from video sequences by combining CNN and SVM. CNN is utilized to learn the underlying high-dimensional normal representations to effectively capture normal features. SVM layer not only distinguishes normal/abnormal cases as a discriminator, but also optimizes parameters of the whole model as an optimization objective. From our exhaustive study of work done and research about Weapon detection model , we proposed a Model which detects the Weapon from video or Picture and activates the alarm.

Features to Detect Weapons / Intruders

Weapons:

We propose algorithms that are able to alert the human operator when a firearm or knife is visible in the image. We have focused on limiting the number of false alarms in order to allow for a real-life application of the system. The specificity and sensitivity of the knife detection are significantly better than others published recently. We have also managed to propose a version of a firearm detection algorithm that offers a near-zero rate of false alarms. We have shown that it is possible to create a system that is capable of an early warning in a dangerous situation, which may lead to faster and more effective response times and a reduction in the number of potential victims.

Size:

Estimation of the size of software is an essential part of Software Project Management. It helps the project manager to further predict the effort and time which will be needed to build the project. Various measures are used in project size estimation. Some of these are: • Lines of Code • Number of entities in ER diagram • Total number of processes in detailed data flow diagram • Function points

Find the number of functions belonging to the following types: • External Inputs: Functions related to data entering the system. • External outputs: Functions related to data exiting the system. • External Inquiries: They leads to data retrieval from system but don’t change the system. • Internal Files: Logical files maintained within the system. Log files are not included here. • External interface Files: These are logical files for other applications which are used by our system.

Trigger:

Detecting small objects is a difficult task as these objects are rather smaller than the human. In this section, we will implement a gun detector that trained by using the discriminatively trained part-based models. As our object of interest is gun, we will collect different positive samples from different type of gun related videos. To minimize the amount of supervision, we provide the bounding box of the gun in the first frame where the gun appears and apply the tracking method to let it track for the gun. We will then use the result from the tracker to annotate the gun location in each image. For the negative samples, we will use all the annotation from the Pascal Visual Object Classes Challenge (VOC) as all the annotations are without any gun object. Lastly, all the annotation results of the positive sample and negative samples are used as the input for the DPM to train a gun model. Tracking is required in different stages of our system because the object detector tends to produce sparse detection as the object of interest is too small.

Handle

Cohen’s kappa coefficient is used to check the agreement between experts which is calculated using following formula:

aaaaa

where pa ¼ proportion of observations for agreement of two experts; pc ¼ proportion of observations for agreement which is expected to happen by chance between two experts. Agreement matrix of proportions is for weapon purchase. Cohen’ Kappa coefficient value was found to be 0.9425 at a ¼ 0.05 (a is probability of confidence interval for kappa statistics) which signifies an almost perfect agreement between the experts. R Programming Package “psych” is used to compute Cohen’s kappa coefficient. Considering significance and magnitude of kappa coefficient so computed, the annotations labelling represents the justification of process of manually labelling approach which can therefore be used in our analysis to train and test our proposed automated illegal weapon procurement model.

Project Summary:

In this project CNN algorithm is simulated for pre-labelled image dataset for weapon (gun, knife) detection. The algorithm is efficient and gives good results but its application in real time is based on a trade-off between speed and accuracy. With respect to accuracy, CNN gives accuracy of approx. 85%. In our CNN model we have taken 16 layers. Apart from this the optimiser used by us is SGD, with categorical cross entropy loss and accuracy is used as the metrics. For every layer we have used the ‘relu’ activation function, for the last layer we have used softmax. We have used Tensorflow, Keras, PIL, OpenCV, Playsound modules to implement the project. Our software takes a 240 x 240 image as input, in a batch size of 32.

Further, it can be implemented for larger datasets by training using GPUs and high-end DSP and FPGA kits.

Owner
Janhavi
Janhavi
This is the open source implementation of the ICLR2022 paper "StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis"

StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image

Meta Research 840 Dec 26, 2022
Natural language detection

Detect the language of text. What’s so cool about franc? franc can support more languages(†) than any other library franc is packaged with support for

Titus 3.8k Jan 02, 2023
The CIS OCR PostCorrectionTool

The CIS OCR Post Correction Tool PoCoTo Source code for the Java-based PoCoTo client enabling fast interactive batch corrections of complete OCR error

CIS OCR Group 36 Dec 15, 2022
color detection using python

colordetection color detection using python In this color detection Python project, we are going to build an application through which you can automat

Ruchith Kumar 1 Nov 04, 2021
A pkg stiching around view images(4-6cameras) to generate bird's eye view.

AVP-BEV-OPEN Please check our new work AVP_SLAM_SIM A pkg stiching around view images(4-6cameras) to generate bird's eye view! View Demo · Report Bug

Xinliang Zhong 37 Dec 01, 2022
🖺 OCR using tensorflow with attention

tensorflow-ocr 🖺 OCR using tensorflow with attention, batteries included Installation git clone --recursive http://github.com/pannous/tensorflow-ocr

646 Nov 11, 2022
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
chineseocr/table_line 表格线检测模型pytorch版

table_line_pytorch chineseocr/table_detct 表格线检测模型table_line pytorch版 原项目github: https://github.com/chineseocr/table-detect 1、模型转换 下载原项目table_detect模型文

1 Oct 21, 2021
Python Computer Vision application that allows users to draw/erase on the screen using their webcam.

CV-Virtual-WhiteBoard The Virtual WhiteBoard is a project I made using the OpenCV and Mediapipe Python libraries. Using your index and middle finger y

Stephen Wang 1 Jan 07, 2022
A curated list of papers and resources for scene text detection and recognition

Awesome Scene Text A curated list of papers and resources for scene text detection and recognition The year when a paper was first published, includin

Jan Zdenek 43 Mar 15, 2022
Polaris is a Face recognition attendance system .

Support Me 🚀 About Polaris 📄 Polaris is a system based on facial recognition with a futuristic GUI design, Can easily find people informations store

XN3UR0N 215 Dec 26, 2022
Fatigue Driving Detection Based on Dlib

Fatigue Driving Detection Based on Dlib

5 Dec 14, 2022
Controlling Volume by Hand Gestures

This program allows the user to control the volume of their device with specific hand gestures involving their thumb and index finger!

Riddhi Bajaj 1 Nov 11, 2021
Convert Text-to Handwriting Using Python

Convert Text-to Handwriting Using Python Description In this project we'll use python library that's "pywhatkit" for converting text to handwriting. t

8 Nov 19, 2022
OCR, Scene-Text-Understanding, Text Recognition

Scene-Text-Understanding Survey [2015-PAMI] Text Detection and Recognition in Imagery: A Survey paper [2014-Front.Comput.Sci] Scene Text Detection and

Alan Tang 354 Dec 12, 2022
With the virtual keyboard, you can write on the real time images by combining the thumb and index fingers on the letter you want.

Virtual Keyboard With the virtual keyboard, you can write on the real time images by combining the thumb and index fingers on the letter you want. At

Güldeniz Bektaş 5 Jan 23, 2022
This is a pytorch re-implementation of EAST: An Efficient and Accurate Scene Text Detector.

EAST: An Efficient and Accurate Scene Text Detector Description: This version will be updated soon, please pay attention to this work. The motivation

Dejia Song 544 Dec 20, 2022
Steve Tu 71 Dec 30, 2022
Run tesseract with the tesserocr bindings with @OCR-D's interfaces

ocrd_tesserocr Crop, deskew, segment into regions / tables / lines / words, or recognize with tesserocr Introduction This package offers OCR-D complia

OCR-D 38 Oct 14, 2022
Resizing Canny Countour In Python

Resizing_Canny_Countour Install Visual Studio Code , https://code.visualstudio.com/download Select Python and install with terminal( pip install openc

Walter Ng 1 Nov 07, 2021