Transformer - A TensorFlow Implementation of the Transformer: Attention Is All You Need

Overview

[UPDATED] A TensorFlow Implementation of Attention Is All You Need

When I opened this repository in 2017, there was no official code yet. I tried to implement the paper as I understood, but to no surprise it had several bugs. I realized them mostly thanks to people who issued here, so I'm very grateful to all of them. Though there is the official implementation as well as several other unofficial github repos, I decided to update my own one. This update focuses on:

  • readable / understandable code writing
  • modularization (but not too much)
  • revising known bugs. (masking, positional encoding, ...)
  • updating to TF1.12. (tf.data, ...)
  • adding some missing components (bpe, shared weight matrix, ...)
  • including useful comments in the code.

I still stick to IWSLT 2016 de-en. I guess if you'd like to test on a big data such as WMT, you would rely on the official implementation. After all, it's pleasant to check quickly if your model works. The initial code for TF1.2 is moved to the tf1.2_lecacy folder for the record.

Requirements

  • python==3.x (Let's move on to python 3 if you still use python 2)
  • tensorflow==1.12.0
  • numpy>=1.15.4
  • sentencepiece==0.1.8
  • tqdm>=4.28.1

Training

bash download.sh

It should be extracted to iwslt2016/de-en folder automatically.

  • STEP 2. Run the command below to create preprocessed train/eval/test data.
python prepro.py

If you want to change the vocabulary size (default:32000), do this.

python prepro.py --vocab_size 8000

It should create two folders iwslt2016/prepro and iwslt2016/segmented.

  • STEP 3. Run the following command.
python train.py

Check hparams.py to see which parameters are possible. For example,

python train.py --logdir myLog --batch_size 256 --dropout_rate 0.5
  • STEP 3. Or download the pretrained models.
wget https://dl.dropbox.com/s/4lom1czy5xfzr4q/log.zip; unzip log.zip; rm log.zip

Training Loss Curve

Learning rate

Bleu score on devset

Inference (=test)

  • Run
python test.py --ckpt log/1/iwslt2016_E19L2.64-29146 (OR yourCkptFile OR yourCkptFileDirectory)

Results

  • Typically, machine translation is evaluated with Bleu score.
  • All evaluation results are available in eval/1 and test/1.
tst2013 (dev) tst2014 (test)
28.06 23.88

Notes

  • Beam decoding will be added soon.
  • I'm going to update the code when TF2.0 comes out if possible.
Owner
Kyubyong Park
Lives in Seoul, Korea. Studied Linguistics at SNU and Univ. of Hawaii.
Kyubyong Park
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
Binaural Speech Synthesis

Binaural Speech Synthesis This repository contains code to train a mono-to-binaural neural sound renderer. If you use this code or the provided datase

Facebook Research 135 Dec 18, 2022
मराठी भाषा वाचविण्याचा एक प्रयास. इंग्रजी ते मराठीचा शब्दकोश. An attempt to preserve the Marathi language. A lightweight and ad free English to Marathi thesaurus.

For English, scroll down मराठी शब्द मराठी भाषा वाचवण्यासाठी मी हा ओपन सोर्स प्रोजेक्ट सुरू केला आहे. माझ्या मते, आपली भाषा हळूहळू आणि कोणाचाही लक्षात

मुक्त स्त्रोत 20 Oct 11, 2022
Transformer related optimization, including BERT, GPT

This repository provides a script and recipe to run the highly optimized transformer-based encoder and decoder component, and it is tested and maintained by NVIDIA.

NVIDIA Corporation 1.7k Jan 04, 2023
Clone a voice in 5 seconds to generate arbitrary speech in real-time

This repository is forked from Real-Time-Voice-Cloning which only support English. English | 中文 Features 🌍 Chinese supported mandarin and tested with

Weijia Chen 25.6k Jan 06, 2023
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing

Introduction Funnel-Transformer is a new self-attention model that gradually compresses the sequence of hidden states to a shorter one and hence reduc

GUOKUN LAI 197 Dec 11, 2022
ChessCoach is a neural network-based chess engine capable of natural-language commentary.

ChessCoach is a neural network-based chess engine capable of natural-language commentary.

Chris Butner 380 Dec 03, 2022
🚀 RocketQA, dense retrieval for information retrieval and question answering, including both Chinese and English state-of-the-art models.

In recent years, the dense retrievers based on pre-trained language models have achieved remarkable progress. To facilitate more developers using cutt

475 Jan 04, 2023
Open solution to the Toxic Comment Classification Challenge

Starter code: Kaggle Toxic Comment Classification Challenge More competitions 🎇 Check collection of public projects 🎁 , where you can find multiple

minerva.ml 153 Jun 22, 2022
Easy Language Model Pretraining leveraging Huggingface's Transformers and Datasets

Easy Language Model Pretraining leveraging Huggingface's Transformers and Datasets What is LASSL • How to Use What is LASSL LASSL은 LAnguage Semi-Super

LASSL: LAnguage Self-Supervised Learning 116 Dec 27, 2022
Creating an LSTM model to generate music

Music-Generation Creating an LSTM model to generate music music-generator Used to create basic sin wave sounds music-ai Contains the functions to conv

Jerin Joseph 2 Dec 02, 2021
Rank-One Model Editing for Locating and Editing Factual Knowledge in GPT

Rank-One Model Editing (ROME) This repository provides an implementation of Rank-One Model Editing (ROME) on auto-regressive transformers (GPU-only).

Kevin Meng 130 Dec 21, 2022
Local cross-platform machine translation GUI, based on CTranslate2

DesktopTranslator Local cross-platform machine translation GUI, based on CTranslate2 Download Windows Installer You can either download a ready-made W

Yasmin Moslem 29 Jan 05, 2023
Finding Label and Model Errors in Perception Data With Learned Observation Assertions

Finding Label and Model Errors in Perception Data With Learned Observation Assertions This is the project page for Finding Label and Model Errors in P

Stanford Future Data Systems 17 Oct 14, 2022
NLP Overview

NLP-Overview Introduction The field of NPL encompasses a variety of topics which involve the computational processing and understanding of human langu

PeterPham 1 Jan 13, 2022
Tracking Progress in Natural Language Processing

Repository to track the progress in Natural Language Processing (NLP), including the datasets and the current state-of-the-art for the most common NLP tasks.

Sebastian Ruder 21.2k Dec 30, 2022
🤗🖼️ HuggingPics: Fine-tune Vision Transformers for anything using images found on the web.

🤗 🖼️ HuggingPics Fine-tune Vision Transformers for anything using images found on the web. Check out the video below for a walkthrough of this proje

Nathan Raw 185 Dec 21, 2022
Text Analysis & Topic Extraction on Android App user reviews

AndroidApp_TextAnalysis Hi, there! This is code archive for Text Analysis and Topic Extraction from user_reviews of Android App. Dataset Source : http

Fitrie Ratnasari 1 Feb 14, 2022
Speach Recognitions

easy_meeting Добро пожаловать в интерфейс сервиса автопротоколирования совещаний Easy Meeting. Website - http://cf5c-62-192-251-83.ngrok.io/ Принципиа

Maksim 3 Feb 18, 2022
Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks

TestRank in Pytorch Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks by Yu Li, Min Li, Qiuxia Lai, Ya

3 May 19, 2022