Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

Related tags

Deep LearningAimCLR
Overview

AimCLR

This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

Requirements

Python >=3.6 PyTorch >=1.6

Data Preparation

  • Download the raw data of NTU RGB+D and PKU-MMD.
  • For NTU RGB+D dataset, preprocess data with tools/ntu_gendata.py. For PKU-MMD dataset, preprocess data with tools/pku_part1_gendata.py.
  • Then downsample the data to 50 frames with feeder/preprocess_ntu.py and feeder/preprocess_pku.py.
  • If you don't want to process the original data, download the file folder action_dataset.

Installation

# Install torchlight
$ cd torchlight
$ python setup.py install
$ cd ..

# Install other python libraries
$ pip install -r requirements.txt

Unsupervised Pre-Training

Example for unsupervised pre-training of 3s-AimCLR. You can change some settings of .yaml files in config/ntu60/pretext folder.

# train on NTU RGB+D xview joint stream
$ python main.py pretrain_aimclr --config config/ntu60/pretext/pretext_aimclr_xview_joint.yaml

# train on NTU RGB+D xview motion stream
$ python main.py pretrain_aimclr --config config/ntu60/pretext/pretext_aimclr_xview_motion.yaml

# train on NTU RGB+D xview bone stream
$ python main.py pretrain_aimclr --config config/ntu60/pretext/pretext_aimclr_xview_bone.yaml

Linear Evaluation

Example for linear evaluation of 3s-AimCLR. You can change .yaml files in config/ntu60/linear_eval folder.

# Linear_eval on NTU RGB+D xview
$ python main.py linear_evaluation --config config/ntu60/linear_eval/linear_eval_aimclr_xview_joint.yaml

$ python main.py linear_evaluation --config config/ntu60/linear_eval/linear_eval_aimclr_xview_motion.yaml

$ python main.py linear_evaluation --config config/ntu60/linear_eval/linear_eval_aimclr_xview_bone.yaml

Trained models

We release several trained models in released_model. The performance is better than that reported in the paper. You can download them and test them with linear evaluation by changing weights in .yaml files.

Model NTU 60 xsub (%) NTU 60 xview (%) PKU-MMD Part I (%)
AimCLR-joint 74.34 79.68 83.43
AimCLR-motion 68.68 71.83 72.00
AimCLR-bone 71.87 77.02 82.03
3s-AimCLR 79.18 84.02 87.79

Visualization

The t-SNE visualization of the embeddings after AimCLR pre-training on NTU60-xsub.

Citation

Please cite our paper if you find this repository useful in your resesarch:

@inproceedings{guo2022aimclr,
  Title= {Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition},
  Author= {Tianyu, Guo and Hong, Liu and Zhan, Chen and Mengyuan, Liu and Tao, Wang  and Runwei, Ding},
  Booktitle= {AAAI},
  Year= {2022}
}

Acknowledgement

The framework of our code is extended from the following repositories. We sincerely thank the authors for releasing the codes.

  • The framework of our code is based on CrosSCLR.
  • The encoder is based on ST-GCN.

Licence

This project is licensed under the terms of the MIT license.

Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
Pseudo-Visual Speech Denoising

Pseudo-Visual Speech Denoising This code is for our paper titled: Visual Speech Enhancement Without A Real Visual Stream published at WACV 2021. Autho

Sindhu 94 Oct 22, 2022
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

308 Jan 04, 2023
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
Inferred Model-based Fuzzer

IMF: Inferred Model-based Fuzzer IMF is a kernel API fuzzer that leverages an automated API model inferrence techinque proposed in our paper at CCS. I

SoftSec Lab 104 Sep 28, 2022
A time series processing library

Timeseria Timeseria is a time series processing library which aims at making it easy to handle time series data and to build statistical and machine l

Stefano Alberto Russo 11 Aug 08, 2022
Pytorch implementation of Deep Recursive Residual Network for Super Resolution (DRRN)

DRRN-pytorch This is an unofficial implementation of "Deep Recursive Residual Network for Super Resolution (DRRN)", CVPR 2017 in Pytorch. [Paper] You

yun_yang 192 Dec 12, 2022
Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe

Traductor de señas Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe Requerimientos 🔧 Python 3.8 o inferior para evitar

Jahaziel Hernandez Hoyos 3 Nov 12, 2022
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from

Jan Sosulski 5 Nov 07, 2022
基于Paddle框架的fcanet复现

fcanet-Paddle 基于Paddle框架的fcanet复现 fcanet 本项目基于paddlepaddle框架复现fcanet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: frazerlin-fcanet 数据准备 本项目已挂

QuanHao Guo 7 Mar 07, 2022
The challenge for Quantum Coalition Hackathon 2021

Qchack 2021 Google Challenge This is a challenge for the brave 2021 qchack.io participants. Instructions Hello, intrepid qchacker, welcome to the G|o

quantumlib 18 May 04, 2022
Snscrape-jsonl-urls-extractor - Extracts urls from jsonl produced by snscrape

snscrape-jsonl-urls-extractor extracts urls from jsonl produced by snscrape Usag

1 Feb 26, 2022
This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

215355 1 Dec 16, 2021
[ACL-IJCNLP 2021] Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning

CLNER The code is for our ACL-IJCNLP 2021 paper: Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning CLNER is a

71 Dec 08, 2022
Learning Continuous Image Representation with Local Implicit Image Function

LIIF This repository contains the official implementation for LIIF introduced in the following paper: Learning Continuous Image Representation with Lo

Yinbo Chen 1k Dec 25, 2022
Generating synthetic mobility data for a realistic population with RNNs to improve utility and privacy

lbs-data Motivation Location data is collected from the public by private firms via mobile devices. Can this data also be used to serve the public goo

Alex 11 Sep 22, 2022
An introduction to bioimage analysis - http://bioimagebook.github.io

Introduction to Bioimage Analysis This book tries explain the main ideas of image analysis in a practical and engaging way. It's written primarily for

Bioimage Book 20 Nov 28, 2022
An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance"

Lidar-Segementation An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance" from

Wangxu1996 135 Jan 06, 2023
A TensorFlow Implementation of "Deep Multi-Scale Video Prediction Beyond Mean Square Error" by Mathieu, Couprie & LeCun.

Adversarial Video Generation This project implements a generative adversarial network to predict future frames of video, as detailed in "Deep Multi-Sc

Matt Cooper 704 Nov 26, 2022
Efficiently Disentangle Causal Representations

Efficiently Disentangle Causal Representations Install dependency pip install -r requirements.txt Main experiments Causality direction prediction cd

4 Apr 01, 2022