[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution

Related tags

Deep LearningArbSR
Overview

ArbSR

Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021

[Project] [arXiv]

Highlights

  • A plug-in module to extend a baseline SR network (e.g., EDSR and RCAN) to a scale-arbitrary SR network with small additional computational and memory cost.
  • Promising results for scale-arbitrary SR (both non-integer and asymmetric scale factors) while maintaining the state-of-the-art performance for SR with integer scale factors.

Demo

gif

Motivation

Although recent CNN-based single image SR networks (e.g., EDSR, RDN and RCAN) have achieved promising performance, they are developed for image SR with a single specific integer scale (e.g., x2, x3, x4). In real-world applications, non-integer SR (e.g., from 100x100 to 220x220) and asymmetric SR (e.g., from 100x100 to 220x420) are also necessary such that customers can zoom in an image arbitrarily for better view of details.

Overview

overview

Requirements

  • Python 3.6
  • PyTorch == 1.1.0
  • numpy
  • skimage
  • imageio
  • cv2

Train

1. Prepare training data

1.1 Download DIV2K training data (800 training images) from DIV2K dataset or SNU_CVLab.

1.2 Cd to ./utils and run gen_training_data.m in Matlab to prepare HR/LR images in your_data_path as belows:

your_data_path
└── DIV2K
	├── HR
		├── 0001.png
		├── ...
		└── 0800.png
	└── LR_bicubic
		├── X1.10
			├── 0001.png
			├── ...
			└── 0800.png
		├── ...
		└── X4.00_X3.50
			├── 0001.png
			├── ...
			└── 0800.png

2. Begin to train

Run ./main.sh to train on the DIV2K dataset. Please update dir_data in the bash file as your_data_path.

Test

1. Prepare test data

1.1 Download benchmark datasets (e.g., Set5, Set14 and other test sets).

1.2 Cd to ./utils and run gen_test_data.m in Matlab to prepare HR/LR images in your_data_path as belows:

your_data_path
└── benchmark
	├── Set5
		├── HR
			├── baby.png
			├── ...
			└── woman.png
		└── LR_bicubic
			├── X1.10
				├── baby.png
				├── ...
				└── woman.png
			├── ...
			└── X4.00_X3.50
				├── baby.png
				├── ...
				└── woman.png
	├── Set14
	├── B100
	├── Urban100
	└── Manga109
		├── HR
			├── AisazuNihalrarenai.png
			├── ...
			└── YouchienBoueigumi.png
		└── LR_bicubic
			├── X1.10
				├── AisazuNihalrarenai.png
				├── ...
				└── YouchienBoueigumi.png
			├── ...
			└── X4.00_X3.50
				├── AisazuNihalrarenai.png
				├── ...
				└── YouchienBoueigumi.png

2. Begin to test

Run ./test.sh to test on benchmark datasets. Please update dir_data in the bash file as your_data_path.

Quick Test on An LR Image

Run ./quick_test.sh to enlarge an LR image to an arbitrary size. Please update dir_img in the bash file as your_img_path.

Visual Results

1. SR with Symmetric Scale Factors

non-integer

2. SR with Asymmetric Scale Factors

asymmetric

3. SR with Continuous Scale Factors

Please try our interactive viewer.

Citation

@InProceedings{Wang2020Learning,
  title={Learning A Single Network for Scale-Arbitrary Super-Resolution},
  author={Longguang Wang, Yingqian Wang, Zaiping Lin, Jungang Yang, Wei An, and Yulan Guo},
  booktitle={ICCV},
  year={2021}
}

Acknowledgements

This code is built on EDSR (PyTorch) and Meta-SR. We thank the authors for sharing the codes.

Owner
Longguang Wang
Longguang Wang
MBPO (paper: When to trust your model: Model-based policy optimization) in offline RL settings

offline-MBPO This repository contains the code of a version of model-based RL algorithm MBPO, which is modified to perform in offline RL settings Pape

LxzGordon 1 Oct 24, 2021
A library for uncertainty representation and training in neural networks.

Epistemic Neural Networks A library for uncertainty representation and training in neural networks. Introduction Many applications in deep learning re

DeepMind 211 Dec 12, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
Deep Reinforcement Learning with pytorch & visdom

Deep Reinforcement Learning with pytorch & visdom Sample testings of trained agents (DQN on Breakout, A3C on Pong, DoubleDQN on CartPole, continuous A

Jingwei Zhang 783 Jan 04, 2023
Neural network for recognizing the gender of people in photos

Neural Network For Gender Recognition How to test it? Install requirements.txt file using pip install -r requirements.txt command Run nn.py using pyth

Valery Chapman 1 Sep 18, 2022
Keras Image Embeddings using Contrastive Loss

Image to Embedding projection in vector space. Implementation in keras and tensorflow of batch all triplet loss for one-shot/few-shot learning.

Shravan Anand K 5 Mar 21, 2022
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

Matias Moreyra 23 Mar 09, 2022
Code repository for "Free View Synthesis", ECCV 2020.

Free View Synthesis Code repository for "Free View Synthesis", ECCV 2020. Setup Install the following Python packages in your Python environment - num

Intelligent Systems Lab Org 253 Dec 07, 2022
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Microsoft 93 Nov 28, 2022
Cweqgen - The CW Equation Generator

The CW Equation Generator The cweqgen (pronouced like "Queck-Jen") package provi

2 Jan 15, 2022
Convert human motion from video to .bvh

video_to_bvh Convert human motion from video to .bvh with Google Colab Usage 1. Open video_to_bvh.ipynb in Google Colab Go to https://colab.research.g

Dene 306 Dec 10, 2022
Chatbot in 200 lines of code using TensorLayer

Seq2Seq Chatbot This is a 200 lines implementation of Twitter/Cornell-Movie Chatbot, please read the following references before you read the code: Pr

TensorLayer Community 820 Dec 17, 2022
PyTorch implementation of "Conformer: Convolution-augmented Transformer for Speech Recognition" (INTERSPEECH 2020)

PyTorch implementation of Conformer: Convolution-augmented Transformer for Speech Recognition. Transformer models are good at capturing content-based

Soohwan Kim 565 Jan 04, 2023
Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER 🦌 🦒 Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEE

33 Dec 23, 2022
Face Detection & Age Gender & Expression & Recognition

Face Detection & Age Gender & Expression & Recognition

Sajjad Ayobi 188 Dec 28, 2022
Towards uncontrained hand-object reconstruction from RGB videos

Towards uncontrained hand-object reconstruction from RGB videos Yana Hasson, Gül Varol, Ivan Laptev and Cordelia Schmid Project page Paper Table of Co

Yana 69 Dec 27, 2022
Build Low Code Automated Tensorflow, What-IF explainable models in just 3 lines of code.

Build Low Code Automated Tensorflow explainable models in just 3 lines of code.

Hasan Rafiq 170 Dec 26, 2022
ConvMAE: Masked Convolution Meets Masked Autoencoders

ConvMAE ConvMAE: Masked Convolution Meets Masked Autoencoders Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1, 1 Shanghai AI Laboratory, 2 M

Alpha VL Team of Shanghai AI Lab 345 Jan 08, 2023
Facial expression detector

A tensorflow convolutional neural network model to detect facial expressions.

Carlos Tardón Rubio 5 Apr 20, 2022