PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Overview

Hand Biomechanical Constraints Pytorch

Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020).

This project reimplement following components :

  1. 3 kinds of biomechanical soft constraints
  2. integrate BMC into training procedure (PyTorch version)

Usage

  • Retrieve the code
git clone https://github.com/MengHao666/Hand-BMC-pytorch
cd Hand-BMC-pytorch
  • Create and activate the virtual environment with python dependencies
conda env create --file=environment.yml
conda activate bmc

Download data

Download 3D joint location data joints.zip Google Drive or Baidu Pan (2pip), and . These statistics are from following datasets:

Note the data from these datasets under their own licenses.

Calculate BMC

BMC

Run the code

python calculate_bmc.py

You will get

  • bone_len_max.npy bone_len_min.npy for bone length limits
  • curvatures_max.npy curvatures_min.npy for Root bones' curvatures
  • PHI_max.npy PHI_min.npy for Root bones' angular distance
  • joint_angles.npy for Joint angles

And if u want to check the coordinate system, run the code

cd utils
python calculate_joint_angles.py
  • red ,green, blue arrows refer to X,Y,Z of local coordinate system respectively;
  • dark arrows refer to bones;
  • pink arrows refer to bone projection into X-Z plane of local coordinate system;
One view Another view

Run the code

python calculate_convex_hull.py

You will get CONVEX_HULLS.npy, i.e. convex hulls to encircle the anatomically plausible joint angles.

And you will also see every convex hull like following figure:

BMC

  • "Bone PIP" means the bone from MCP joint to PIP joint in thumb
  • flexion and abduction is two kinds of angle describing joint rotation
  • "ori_convex_hull" means the original convex hull calculated from all joint angle points
  • "rdp_convex_hull" means convex hull simplified by the Ramer-Douglas-Peucker algorithm, a polygon simplification algorithm
  • "del_convex_hull" means convex hull further simplified by a greedy algorithm
  • "rectangle" means the minimal rectangle to surround all joint angle points

Run the code

python plot.py

You will see all the convex hulls

BMC

Integrate BMC into training (PyTorch version)

Run the code

python weakloss.py

Experiment results

To check influence of BMC, instead of reimplementing the network of origin paper, I integrate BMC into my own project,

Train and evaluation curve

(AUC means 3D PCK, and ACC_HM means 2D PCK) teaser

3D PCK AUC Diffenence

Dataset DetNet DetNet+BMC
RHD 0.9339 0.9364
STB 0.8744 0.8778
DO 0.9378 0.9475
EO 0.9270 0.9182

Note

  • Adjusting training parameters carefully, longer training time might further boost accuracy.
  • As BMC is a weakly supervised method, it may only make predictions more physically plausible,but cannot boost AUC performance strongly when strong supervision is used.

Limitation

  • Due to time limitation, I didn't reimplement the network and experiments of original paper.
  • There is a little difference between original paper and my reimplementation. But most of them match.

Citation

This is the unofficial pytorch reimplementation of the paper "Weakly supervised 3d hand pose estimation via biomechanical constraints (ECCV 2020).

If you find the project helpful, please star this project and cite them:

@article{spurr2020weakly,
  title={Weakly supervised 3d hand pose estimation via biomechanical constraints},
  author={Spurr, Adrian and Iqbal, Umar and Molchanov, Pavlo and Hilliges, Otmar and Kautz, Jan},
  journal={arXiv preprint arXiv:2003.09282},
  volume={8},
  year={2020},
  publisher={Springer}
}
Owner
Hao Meng
Master student at Beihang University , mainly interested in hand pose estimation.
Hao Meng
Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

HAABSAStar Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://gith

1 Sep 14, 2020
Robustness between the worst and average case

Robustness between the worst and average case A repository that implements intermediate robustness training and evaluation from the NeurIPS 2021 paper

CMU Locus Lab 16 Dec 02, 2022
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
[WWW 2022] Zero-Shot Stance Detection via Contrastive Learning

PT-HCL for Zero-Shot Stance Detection The code of this repository is constantly being updated... Please look forward to it! Introduction This reposito

Akuchi 12 Dec 21, 2022
Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

Aniruddha Gokhale 15 Dec 02, 2022
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks Image Classification Dataset: Google Landmark, COCO, ImageNet Model: Efficient

FedML-AI 62 Dec 10, 2022
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federi

18 Aug 02, 2022
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

Hao Lu 18 Nov 05, 2022
Neural network for recognizing the gender of people in photos

Neural Network For Gender Recognition How to test it? Install requirements.txt file using pip install -r requirements.txt command Run nn.py using pyth

Valery Chapman 1 Sep 18, 2022
The code for paper "Learning Implicit Fields for Generative Shape Modeling".

implicit-decoder The tensorflow code for paper "Learning Implicit Fields for Generative Shape Modeling", Zhiqin Chen, Hao (Richard) Zhang. Project pag

Zhiqin Chen 353 Dec 30, 2022
UDP++ (ECCVW 2020 Oral), (Winner of COCO 2020 Keypoint Challenge).

UDP-Pose This is the pytorch implementation for UDP++, which won the Fisrt place in COCO Keypoint Challenge at ECCV 2020 Workshop. Top-Down Results on

20 Jul 29, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Daft-Exprt - PyTorch Implementation PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis The

Keon Lee 47 Dec 18, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥

Jiaxi Jiang 282 Jan 02, 2023
Code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization,

FSRA This repository contains the dataset link and the code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV

Dmmm 32 Dec 18, 2022
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
[CVPR 2022] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels

Using Unreliable Pseudo Labels Official PyTorch implementation of Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels, CVPR 2022. Ple

Haochen Wang 268 Dec 24, 2022
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

Yuxin Zhang 27 Jun 28, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification tasks

Uniformer - Pytorch Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification ta

Phil Wang 90 Nov 24, 2022
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022