Official repository for "On Improving Adversarial Transferability of Vision Transformers" (2021)

Overview

Improving-Adversarial-Transferability-of-Vision-Transformers

Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Khan, Fatih Porikli

arxiv link

demo trm

Abstract: Vision transformers (ViTs) process input images as sequences of patches via self-attention; a radically different architecture than convolutional neural networks(CNNs). This makes it interesting to study the adversarial feature space of ViT models and their transferability. In particular, we observe that adversarial patterns found via conventional adversarial attacks show very low black-box transferability even for large ViT models. However, we show that this phenomenon is only due to the sub-optimal attack procedures that do not leverage the true representation potential of ViTs. A deep ViT is composed of multiple blocks, with a consistent architecture comprising of self-attention and feed-forward layers, where each block is capable of independently producing a class token. Formulating an attack using only the last class token (conventional approach) does not directly leverage the discriminative information stored in the earlier tokens, leading to poor adversarial transferability of ViTs. Using the compositional nature of ViT models, we enhance transferability of existing attacks by introducing two novel strategies specific to the architecture of ViT models.(i) Self-Ensemble:We propose a method to find multiple discriminative pathways by dissecting a single ViT model into an ensemble of networks. This allows explicitly utilizing class-specific information at each ViT block.(ii) Token Refinement:We then propose to refine the tokens to further enhance the discriminative capacity at each block of ViT. Our token refinement systematically combines the class tokens with structural information preserved within the patch tokens. An adversarial attack when applied to such refined tokens within the ensemble of classifiers found in a single vision transformer has significantly higher transferability and thereby brings out the true generalization potential of the ViT’s adversarial space.

Contents

  1. Quickstart
  2. Self-Ensemble
  3. Token Refinement Module
  4. Training TRM
  5. References
  6. Citation

Requirements

pip install -r requirements.txt

Quickstart

(top) To directly run demo transfer attacks using baseline, ensemble, and ensemble with TRM strategies, use following scripts. The path to the dataset must be updated.

./scripts/run_attack.sh

Dataset

We use a subset of the ImageNet validation set (5000 images) containing 5 random samples from each class that are correctly classified by both ResNet50 and ViT-small. This dataset is used for all experiments. This list of images is present in data/image_list.json. In following code, setting the path to the original ImageNet 2012 val set is sufficient; only the subset of images will be used for the evaluation.

Self-Ensemble Strategy

(top) Run transfer attack using our ensemble strategy as follows. DATA_DIR points to the root directory containing the validation images of ImageNet (original imagenet). We support attack types FGSM, PGD, MI-FGSM, DIM, and TI by default. Note that any other attack can be applied on ViT models using the self-ensemble strategy.

python test.py \
  --test_dir "$DATA_DIR" \
  --src_model deit_tiny_patch16_224 \
  --tar_model tnt_s_patch16_224  \
  --attack_type mifgsm \
  --eps 16 \
  --index "all" \
  --batch_size 128

For other model families, the pretrained models will have to be downloaded and the paths updated in the relevant files under vit_models.

Token Refinement Module

(top) For self-ensemble attack with TRM, run the following. The same options are available for attack types and DATA_DIR must be set to point to the data directory.

python test.py \
  --test_dir "$DATA_DIR" \
  --src_model tiny_patch16_224_hierarchical \
  --tar_model tnt_s_patch16_224  \
  --attack_type mifgsm \
  --eps 16 \
  --index "all" \
  --batch_size 128

Pretrained TRM modules

Model Avg Acc Inc Pretrained
DeiT-T 12.43 Link
DeiT-S 15.21 Link
DeiT-B 16.70 Link

Average accuracy increase (Avg Acc Inc) refers to the improvement of discriminativity of each ViT block (measured by top-1 accuracy on ImageNet val set using each block output). The increase after adding TRM averaged across blocks is reported.

Training TRM

(top) For training the TRM module, use the following:

./scripts/train_trm.sh

Set the variables for experiment name (EXP_NAME) used for logging checkpoints and update DATA_PATH to point to the ImageNet 2012 root directory (containing /train and /val folders). We train using a single GPU. We initialize the weights using a pre-trained model and update only the TRM weights.

For using other models, replace the model name and the pretrained model path as below:

python -m torch.distributed.launch \
  --nproc_per_node=1 \
  --master_port="$RANDOM" \
  --use_env train_trm.py \
  --exp "$EXP_NAME" \
  --model "small_patch16_224_hierarchical" \
  --lr 0.01 \
  --batch-size 256 \
  --start-epoch 0 \
  --epochs 12 \
  --data "$DATA_PATH" \
  --pretrained "https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth" \
  --output_dir "checkpoints/$EXP_NAME"

References

(top) Code borrowed from DeiT repository and TIMM library. We thank them for their wonderful code bases.

Citation

If you find our work, this repository, or pretrained transformers with refined tokens useful, please consider giving a star and citation.

@misc{naseer2021improving,
      title={On Improving Adversarial Transferability of Vision Transformers}, 
      author={Muzammal Naseer and Kanchana Ranasinghe and Salman Khan and Fahad Shahbaz Khan and Fatih Porikli},
      year={2021},
      eprint={2106.04169},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
You might also like...
This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021.

inverse_attention This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021. Le

Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

The repository offers the official implementation of our paper in PyTorch.

Cloth Interactive Transformer (CIT) Cloth Interactive Transformer for Virtual Try-On Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Phi

Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.

Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F

Official repository for
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)
Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)

Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation) HOTR: End-to-

Competitive Programming Club, Clinify's Official repository for CP problems hosting by club members.

Clinify-CPC_Programs This repository holds the record of the competitive programming club where the competitive coding aspirants are thriving hard and

Comments
  • ImageNet dataset cannot be loaded

    ImageNet dataset cannot be loaded

    I tested the code (run_attack.sh) and found that I cannot load imagenet dataset. I dug into it and found that maybe its because in dataset.py, in class AdvImageNet: self.image_list is a set loaded with the predifined data/image_list.json, so an element string in it looks like this: n01820546/ILSVRC2012_val_00027008.JPEG Nonetheless, the is_valid_file function used in super init keeps only the last 38 char of the image file path, like ILSVRC2012_val_00027008.JPEG , to check if it's listed in self.image_list. Thus, the function will always return false as there is no class folder in the string, and no image will be loaded.

    A simple workaround will work (at least I've tested):

    class AdvImageNet(torchvision.datasets.ImageFolder):
    
        def __init__(self, image_list="data/image_list.json", *args, **kwargs):
            self.image_list = list(json.load(open(image_list, "r"))["images"])
            for i in range(len(self.image_list)):
                self.image_list[i] = self.image_list[i].split('/')[1]
            super(AdvImageNet, self).__init__(
                is_valid_file=self.is_valid_file, *args, **kwargs)
    
        def is_valid_file(self, x: str) -> bool:
            return x[-38:] in self.image_list
    

    Another possibility is that the imagenet structure used by this repo is different from mine:

      val/ <-- designated as DATA_DIR in run_attack.sh
        n01820546/
          ILSVRC2012_val_00027008.JPEG
    

    In this case, could you specify how the dataset should be structured? Thank you!

    opened by HigasaOR 5
Releases(v0)
Owner
Muzammal Naseer
PhD student at Australian National University.
Muzammal Naseer
The official implementation of ICCV paper "Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds".

Box-Aware Tracker (BAT) Pytorch-Lightning implementation of the Box-Aware Tracker. Box-Aware Feature Enhancement for Single Object Tracking on Point C

Kangel Zenn 5 Mar 26, 2022
NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning Tim Pearce, Jun Zhu Offline RL workshop, NeurIPS 2021 Paper: https://arxiv.org/abs/2104

Tim Pearce 169 Dec 26, 2022
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
Medical Image Segmentation using Squeeze-and-Expansion Transformers

Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im

askerlee 172 Dec 20, 2022
The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network.

UNet-SIDE The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network. For Super Reso

TIANTIAN XU 1 Jan 13, 2022
A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population

DeepKE is a knowledge extraction toolkit supporting low-resource and document-level scenarios for entity, relation and attribute extraction. We provide comprehensive documents, Google Colab tutorials

ZJUNLP 1.6k Jan 05, 2023
Code for "Searching for Efficient Multi-Stage Vision Transformers"

Searching for Efficient Multi-Stage Vision Transformers This repository contains the official Pytorch implementation of "Searching for Efficient Multi

Yi-Lun Liao 62 Oct 25, 2022
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022
Code for the paper: Adversarial Machine Learning: Bayesian Perspectives

Code for the paper: Adversarial Machine Learning: Bayesian Perspectives This repository contains code for reproducing the experiments in the ** Advers

Roi Naveiro 2 Nov 11, 2022
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers (arXiv2021)

Polyp-PVT by Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li, Huazhu Fu, & Ling Shao. This repo is the official implementation of "Polyp-PVT: Polyp Se

Deng-Ping Fan 102 Jan 05, 2023
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022
[ICCV 2021] Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation

MAED: Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation Getting Started Our codes are implemented and tested with pyth

ZiNiU WaN 176 Dec 15, 2022
NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Sean Welleck 83 Jan 05, 2023
KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

KAPAO (Keypoints and Poses as Objects) KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as

Will McNally 664 Dec 30, 2022
Learning to Draw: Emergent Communication through Sketching

Learning to Draw: Emergent Communication through Sketching This is the official code for the paper "Learning to Draw: Emergent Communication through S

19 Jul 22, 2022
Discord bot for notifying on github events

Git-Observer Discord bot for notifying on github events ⚠️ This bot is meant to write messages to only one channel (implementing this for multiple pro

ilu_vatar_ 0 Apr 19, 2022
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
Detectron2 for Document Layout Analysis

Detectron2 trained on PubLayNet dataset This repo contains the training configurations, code and trained models trained on PubLayNet dataset using Det

Himanshu 163 Nov 21, 2022