Nvidia Semantic Segmentation monorepo

Overview

Paper | YouTube | Cityscapes Score

Pytorch implementation of our paper Hierarchical Multi-Scale Attention for Semantic Segmentation.

Please refer to the sdcnet branch if you are looking for the code corresponding to Improving Semantic Segmentation via Video Prediction and Label Relaxation.

Installation

  • The code is tested with pytorch 1.3 and python 3.6
  • You can use ./Dockerfile to build an image.

Download Weights

  • Create a directory where you can keep large files. Ideally, not in this directory.
  > mkdir <large_asset_dir>
  • Update __C.ASSETS_PATH in config.py to point at that directory

    __C.ASSETS_PATH=<large_asset_dir>

  • Download pretrained weights from google drive and put into <large_asset_dir>/seg_weights

Download/Prepare Data

If using Cityscapes, download Cityscapes data, then update config.py to set the path:

__C.DATASET.CITYSCAPES_DIR=<path_to_cityscapes>

If using Cityscapes Autolabelled Images, download Cityscapes data, then update config.py to set the path:

__C.DATASET.CITYSCAPES_CUSTOMCOARSE=<path_to_cityscapes>

If using Mapillary, download Mapillary data, then update config.py to set the path:

__C.DATASET.MAPILLARY_DIR=<path_to_mapillary>

Running the code

The instructions below make use of a tool called runx, which we find useful to help automate experiment running and summarization. For more information about this tool, please see runx. In general, you can either use the runx-style commandlines shown below. Or you can call python train.py <args ...> directly if you like.

Run inference on Cityscapes

Dry run:

> python -m runx.runx scripts/eval_cityscapes.yml -i -n

This will just print out the command but not run. It's a good way to inspect the commandline.

Real run:

> python -m runx.runx scripts/eval_cityscapes.yml -i

The reported IOU should be 86.92. This evaluates with scales of 0.5, 1.0. and 2.0. You will find evaluation results in ./logs/eval_cityscapes/...

Run inference on Mapillary

> python -m runx.runx scripts/eval_mapillary.yml -i

The reported IOU should be 61.05. Note that this must be run on a 32GB node and the use of 'O3' mode for amp is critical in order to avoid GPU out of memory. Results in logs/eval_mapillary/...

Dump images for Cityscapes

> python -m runx.runx scripts/dump_cityscapes.yml -i

This will dump network output and composited images from running evaluation with the Cityscapes validation set.

Run inference and dump images on a folder of images

> python -m runx.runx scripts/dump_folder.yml -i

You should end up seeing images that look like the following:

alt text

Train a model

Train cityscapes, using HRNet + OCR + multi-scale attention with fine data and mapillary-pretrained model

> python -m runx.runx scripts/train_cityscapes.yml -i

The first time this command is run, a centroid file has to be built for the dataset. It'll take about 10 minutes. The centroid file is used during training to know how to sample from the dataset in a class-uniform way.

This training run should deliver a model that achieves 84.7 IOU.

Train SOTA default train-val split

> python -m runx.runx  scripts/train_cityscapes_sota.yml -i

Again, use -n to do a dry run and just print out the command. This should result in a model with 86.8 IOU. If you run out of memory, try to lower the crop size or turn off rmi_loss.

Owner
NVIDIA Corporation
NVIDIA Corporation
Machine Translation Implement By Bi-GRU And Transformer

Seq2Seq Translation Implement By Bidirectional GRU And Transformer In Pytorch Before You Run The Code You should download the data through the link be

He Wang 2 Oct 27, 2021
This is the official github repository of the Met dataset

The Met dataset This is the official github repository of the Met dataset. The official webpage of the dataset can be found here. What is it? This cod

Nikolaos-Antonios Ypsilantis 35 Dec 17, 2022
This is the code for HOI Transformer

HOI Transformer Code for CVPR 2021 accepted paper End-to-End Human Object Interaction Detection with HOI Transformer. Reproduction We recomend you to

BigBangEpoch 124 Dec 29, 2022
Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes

Naive-Bayes Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes Downloading Data Set Use our Breast Cancer Wisconsin Data Set Also you can

Faeze Habibi 0 Apr 06, 2022
Maximum Spatial Perturbation for Image-to-Image Translation (Official Implementation)

MSPC for I2I This repository is by Yanwu Xu and contains the PyTorch source code to reproduce the experiments in our CVPR2022 paper Maximum Spatial Pe

51 Dec 14, 2022
Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)

Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F

30 Dec 24, 2022
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
Object recognition using Azure Custom Vision AI and Azure Functions

Step by Step on how to create an object recognition model using Custom Vision, export the model and run the model in an Azure Function

El Bruno 11 Jul 08, 2022
Corgis are the cutest creatures; have 30K of them!

corgi-net This is a dataset of corgi images scraped from the corgi subreddit. After filtering using an ImageNet classifier, the training set consists

Alex Nichol 6 Dec 24, 2022
Multiple Object Extraction from Aerial Imagery with Convolutional Neural Networks

This is an implementation of Volodymyr Mnih's dissertation methods on his Massachusetts road & building dataset and my original methods that are publi

Shunta Saito 255 Sep 07, 2022
Code for layerwise detection of linguistic anomaly paper (ACL 2021)

Layerwise Anomaly This repository contains the source code and data for our ACL 2021 paper: "How is BERT surprised? Layerwise detection of linguistic

6 Dec 07, 2022
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

Yechan Kim 8 Oct 29, 2022
InferPy: Deep Probabilistic Modeling with Tensorflow Made Easy

InferPy: Deep Probabilistic Modeling Made Easy InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top

PGM-Lab 141 Oct 13, 2022
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
Artificial Neural network regression model to predict the energy output in a combined cycle power plant.

Energy_Output_Predictor Artificial Neural network regression model to predict the energy output in a combined cycle power plant. Abstract Energy outpu

1 Feb 11, 2022
The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

ReCo - Regional Contrast This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regio

Shikun Liu 128 Dec 30, 2022
Info and sample codes for "NTU RGB+D Action Recognition Dataset"

"NTU RGB+D" Action Recognition Dataset "NTU RGB+D 120" Action Recognition Dataset "NTU RGB+D" is a large-scale dataset for human action recognition. I

Amir Shahroudy 578 Dec 30, 2022
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification This repository is the official implementation of [Dealing With Misspeci

0 Oct 25, 2021
Pose estimation with MoveNet Lightning

Pose Estimation With MoveNet Lightning MoveNet is the TensorFlow pre-trained model that identifies 17 different key points of the human body. It is th

Yash Vora 2 Jan 04, 2022