Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Overview

Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Introduction

In this work, we propose a new method for unseen object instance segmentation by learning RGB-D feature embeddings from synthetic data. A metric learning loss functionis utilized to learn to produce pixel-wise feature embeddings such that pixels from the same object are close to each other and pixels from different objects are separated in the embedding space. With the learned feature embeddings, a mean shift clustering algorithm can be applied to discover and segment unseen objects. We further improve the segmentation accuracy with a new two-stage clustering algorithm. Our method demonstrates that non-photorealistic synthetic RGB and depth images can be used to learn feature embeddings that transfer well to real-world images for unseen object instance segmentation. arXiv, Talk video

License

Unseen Object Clustering is released under the NVIDIA Source Code License (refer to the LICENSE file for details).

Citation

If you find Unseen Object Clustering useful in your research, please consider citing:

@inproceedings{xiang2020learning,
    Author = {Yu Xiang and Christopher Xie and Arsalan Mousavian and Dieter Fox},
    Title = {Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation},
    booktitle = {Conference on Robot Learning (CoRL)},
    Year = {2020}
}

Required environment

  • Ubuntu 16.04 or above
  • PyTorch 0.4.1 or above
  • CUDA 9.1 or above

Installation

  1. Install PyTorch.

  2. Install python packages

    pip install -r requirement.txt

Download

  • Download our trained checkpoints from here, save to $ROOT/data.

Running the demo

  1. Download our trained checkpoints first.

  2. Run the following script for testing on images under $ROOT/data/demo.

    ./experiments/scripts/demo_rgbd_add.sh

Training and testing on the Tabletop Object Dataset (TOD)

  1. Download the Tabletop Object Dataset (TOD) from here (34G).

  2. Create a symlink for the TOD dataset

    cd $ROOT/data
    ln -s $TOD_DATA tabletop
  3. Training and testing on the TOD dataset

    cd $ROOT
    
    # multi-gpu training, we used 4 GPUs
    ./experiments/scripts/seg_resnet34_8s_embedding_cosine_rgbd_add_train_tabletop.sh
    
    # testing, $GPU_ID can be 0, 1, etc.
    ./experiments/scripts/seg_resnet34_8s_embedding_cosine_rgbd_add_test_tabletop.sh $GPU_ID $EPOCH
    

Testing on the OCID dataset and the OSD dataset

  1. Download the OCID dataset from here, and create a symbol link:

    cd $ROOT/data
    ln -s $OCID_dataset OCID
  2. Download the OSD dataset from here, and create a symbol link:

    cd $ROOT/data
    ln -s $OSD_dataset OSD
  3. Check scripts in experiments/scripts with name test_ocid or test_ocd. Make sure the path of the trained checkpoints exist.

    experiments/scripts/seg_resnet34_8s_embedding_cosine_rgbd_add_test_ocid.sh
    experiments/scripts/seg_resnet34_8s_embedding_cosine_rgbd_add_test_osd.sh
    

Running with ROS on a Realsense camera for real-world unseen object instance segmentation

  • Python2 is needed for ROS.

  • Make sure our pretrained checkpoints are downloaded.

    # start realsense
    roslaunch realsense2_camera rs_aligned_depth.launch tf_prefix:=measured/camera
    
    # start rviz
    rosrun rviz rviz -d ./ros/segmentation.rviz
    
    # run segmentation, $GPU_ID can be 0, 1, etc.
    ./experiments/scripts/ros_seg_rgbd_add_test_segmentation_realsense.sh $GPU_ID

Our example:

Owner
NVIDIA Research Projects
NVIDIA Research Projects
Fast and customizable reconnaissance workflow tool based on simple YAML based DSL.

Fast and customizable reconnaissance workflow tool based on simple YAML based DSL, with support of notifications and distributed workload of that work

Américo Júnior 3 Mar 11, 2022
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
Vignette is a face tracking software for characters using osu!framework.

Vignette is a face tracking software for characters using osu!framework. Unlike most solutions, Vignette is: Made with osu!framework, the game framewo

Vignette 412 Dec 28, 2022
Code for ICLR 2020 paper "VL-BERT: Pre-training of Generic Visual-Linguistic Representations".

VL-BERT By Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, Jifeng Dai. This repository is an official implementation of the paper VL-BERT:

Weijie Su 698 Dec 18, 2022
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

Junyong Lee 151 Dec 30, 2022
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023
This program automatically runs Python code copied in clipboard

CopyRun This program runs Python code which is copied in clipboard WARNING!! USE AT YOUR OWN RISK! NO GUARANTIES IF ANYTHING GETS BROKEN. DO NOT COPY

vertinski 4 Sep 10, 2021
Code for: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification Prerequisite PyTorch = 1.2.0 Python3 torch

16 Dec 14, 2022
[arXiv22] Disentangled Representation Learning for Text-Video Retrieval

Disentangled Representation Learning for Text-Video Retrieval This is a PyTorch implementation of the paper Disentangled Representation Learning for T

Qiang Wang 49 Dec 18, 2022
Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research

Megaverse Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research. The efficient design of the engine enables ph

Aleksei Petrenko 191 Dec 23, 2022
Tensorflow implementation of "Learning Deep Features for Discriminative Localization"

Weakly_detector Tensorflow implementation of "Learning Deep Features for Discriminative Localization" B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and

Taeksoo Kim 363 Jun 29, 2022
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

105 Dec 23, 2022
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

Microsoft 1.3k Dec 30, 2022
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022
This repository is the official implementation of Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models

Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models Link to paper Abstract We study prediction of future out

Rickard Karlsson 2 Aug 19, 2022
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

4 Nov 25, 2022
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022) Introdu

anonymous 14 Oct 27, 2022
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

Phil Wang 110 Dec 30, 2022
Research on controller area network Intrusion Detection Systems

Group members information Member 1: Lixue Liang Member 2: Yuet Lee Chan Member 3: Xinruo Zhang Member 4: Yifei Han User Manual Generate Attack Packets

Roche 4 Aug 30, 2022