We evaluate our method on different datasets (including ShapeNet, CUB-200-2011, and Pascal3D+) and achieve state-of-the-art results, outperforming all the other supervised and unsupervised methods and 3D representations, all in terms of performance, accuracy, and training time.

Overview

An Effective Loss Function for Generating 3D Models from Single 2D Image without Rendering

Papers with code | Paper

Nikola Zubić   Pietro Lio  

University of Novi Sad   University of Cambridge

AIAI 2021

Citation

Besides AIAI 2021, our paper is in a Springer's book entitled "Artificial Intelligence Applications and Innovations": link

Please, cite our paper if you find this code useful for your research.

@article{zubic2021effective,
  title={An Effective Loss Function for Generating 3D Models from Single 2D Image without Rendering},
  author={Zubi{\'c}, Nikola and Li{\`o}, Pietro},
  journal={arXiv preprint arXiv:2103.03390},
  year={2021}
}

Prerequisites

  • Download code:
    Git clone the code with the following command:

    git clone https://github.com/NikolaZubic/2dimageto3dmodel.git
    
  • Open the project with Conda Environment (Python 3.7)

  • Install packages:

    conda install pytorch torchvision torchaudio cudatoolkit=11.0 -c pytorch
    

    Then git clone Kaolin library in the root (2dimageto3dmodel) folder with the following commit and run the following commands:

    cd kaolin
    python setup.py install
    pip install --no-dependencies nuscenes-devkit opencv-python-headless scikit-learn joblib pyquaternion cachetools
    pip install packaging
    

Run the program

Run the following commands from the root/code/ (2dimageto3dmodel/code/) directory:

python main.py --dataset cub --batch_size 16 --weights pretrained_weights_cub --save_results

for the CUB Birds Dataset.

python main.py --dataset p3d --batch_size 16 --weights pretrained_weights_p3d --save_results

for the Pascal 3D+ Dataset.

The results will be saved at 2dimageto3dmodel/code/results/ path.

Continue training

To continue the training process:
Run the following commands (without --save_results) from the root/code/ (2dimageto3dmodel/code/) directory:

python main.py --dataset cub --batch_size 16 --weights pretrained_weights_cub

for the CUB Birds Dataset.

python main.py --dataset p3d --batch_size 16 --weights pretrained_weights_p3d

for the Pascal 3D+ Dataset.

License

MIT

Acknowledgment

This idea has been built based on the architecture of Insafutdinov & Dosovitskiy.
Poisson Surface Reconstruction was used for Point Cloud to 3D Mesh transformation.
The GAN architecture (used for texture mapping) is a mixture of Xian's TextureGAN and Li's GAN.

Comments
  • Where is cmr_data?

    Where is cmr_data?

    Keep running into this issue from cmr_data.p3d import P3dDataset and from cmr_data.p3d import CUBDataset

    but you do not have these files in your repo. I tried using cub_200_2011_dataset.py but it does not take in the same number of arguments as the CUBDataset class used in run_reconstruction.py.

    opened by achhabria7 6
  • ModuleNotFoundError: No module named 'kaolin.graphics'

    ModuleNotFoundError: No module named 'kaolin.graphics'

    Pascal 3D+ dataset with 4722 images is successfully loaded.

    Traceback (most recent call last): File "main.py", line 149, in <module> from rendering.renderer import Renderer File "/home/ujjawal/my_work/object_recon/2d3d/code/rendering/renderer.py", line 1, in <module> from kaolin.graphics.dib_renderer.rasterizer import linear_rasterizer ModuleNotFoundError: No module named kaolin.graphics

    I also downloaded the graphics folder from here https://github.com/NVIDIAGameWorks/kaolin/tree/e7e513173bd4159ae45be6b3e156a3ad156a3eb9 and tried to place in the graphics folder in the kaolin folder locally and here is the error Traceback (most recent call last): File "main.py", line 149, in <module> from rendering.renderer import Renderer File "/home/ujjawal/my_work/object_recon/2d3d/code/rendering/renderer.py", line 1, in <module> from kaolin.graphics.dib_renderer.rasterizer import linear_rasterizer File "/usr/local/lib/python3.6/dist-packages/kaolin-0.9.0-py3.6-linux-x86_64.egg/kaolin/graphics/__init__.py", line 2, in <module> File "/usr/local/lib/python3.6/dist-packages/kaolin-0.9.0-py3.6-linux-x86_64.egg/kaolin/graphics/nmr/__init__.py", line 1, in <module> File "/usr/local/lib/python3.6/dist-packages/kaolin-0.9.0-py3.6-linux-x86_64.egg/kaolin/graphics/nmr/rasterizer.py", line 30, in <module> ImportError: cannot import name rasterize_cuda

    opened by ujjawalcse 6
  • No module named 'models.reconstruction'

    No module named 'models.reconstruction'

    Dear NikolaZubic :
    Thanks for you updated the code recently. Did you put the reconstruction.py in the models folder?When I run “python run_reconstruction.py --name pretrained_reconstruction_cub --dataset cub --batch_size 10 --generate_pseudogt” it display
    No module named 'models.reconstruction.

    opened by lw0210 2
  • inference with single RGB pictures

    inference with single RGB pictures

    Hi, I am interested with your work, it is wonderful, and I want to use my own picture to test the model, could you provided the pretrained model and inference scripts.

    opened by 523997931 2
  • can't find the pseudogt_512*512\.npz file

    can't find the pseudogt_512*512\.npz file

    Dear NikolaZubic: I want to quote your paper, but I can't find the pseudogt_512512.npz file and can't reproduce it. Can you give me the pseudogt_512512.npz file and help me reproduce it? Thanks

    opened by Yangfuha 1
  • ValueError: Training a model requires the pseudo-ground-truth to be setup beforehand.

    ValueError: Training a model requires the pseudo-ground-truth to be setup beforehand.

    I recently read your paper and was very interested in it . I want to reproduce the code of this paper. When I followed your instructions, I found it difficult for me to run the commands(python main.py --dataset cub --batch_size 16 --weights pretrained_weights_cub and python main.py --dataset p3d --batch_size 16 --weights pretrained_weights_p3d.).And the program displayed a value error that training a model requires the pseudo-ground-truth to be setup beforehand. And I don’t know how to solve the problem, so I turn to you for help.I'm sorry to bother you, but I'really eager to solve the problem. I hope to get your reply.Thank you!

    opened by lw0210 1
  • Added step: switch to the correct correct Kaolin branch

    Added step: switch to the correct correct Kaolin branch

    This step will help others to avoid the "ModuleNotFoundError: No module named kaolin.graphics" error.

    Fix to issue: https://github.com/NikolaZubic/2dimageto3dmodel/issues/2

    opened by ricklentz 1
  • Shapenet V2 not training

    Shapenet V2 not training

    Great work guys. I was able to run the code on CUB dataset. But when I tried to run training_test_shape_net.py on Shape Net v2 chair class I'm getting errors because of missing files, unmatched file names, etc.

    So it would be helpful if you provide Shapenet Dataset Folder structure and files(images, masks) description or a sample folder and clear instructions for training the model shapenet dataset. And also if possible give pre-trained weights for the Shape net dataset models

    Thank you

    opened by girishdhegde 0
  • Pretrained model

    Pretrained model

    Hi, I find it hard to understand how to train the model on ShapeNet. It would be very helpful if you can provide a pretrained model on ShapeNet planes (I need it to test the performance in my project). If the pretrained models are not available, it would also be helpful to introduce me of how to train the model on ShapeNet.

    opened by YYYYYHC 0
  • How can I train on the boat set of the Pascal 3D+ dataset

    How can I train on the boat set of the Pascal 3D+ dataset

    I find the data of trainning such as "python run_reconstruction.py --name pretrained_reconstruction_p3d --dataset p3d --optimize_z0 --batch_size 50 --tensorboard" using the data of car.mat in sfm and data folder.Even if I rename the .mat to boat.mat and using the boat imageNet in Pascal 3D+ dataset,I find the shape of the result is more like a car not a boat.So I am wondering how to train the boat set.

    opened by lisentao 0
  • Custom Dataset

    Custom Dataset

    Hi!

    Love the work you guys have done. I am currently conducting a research. Could you please tell me how I would train on a custom dataset and how I would infer an image or create a 3d model out an image with pretrained weights that you have provided?

    opened by mahnoor-fatima-saad 0
  • How do I make my own dataset?

    How do I make my own dataset?

    Dear NikolaZubic: I want to use my own data set to replace the cub or P3D data set for training. Do you have any attention or requirements for images when making data sets?

    opened by lw0210 0
Releases(metadata)
Owner
Nikola Zubić
Interested in Artificial intelligence, Visual Computing and Cognitive science. For future AI projects: @reinai
Nikola Zubić
Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Zhichun Guo 94 Dec 12, 2022
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022
Keeper for Ricochet Protocol, implemented with Apache Airflow

Ricochet Keeper This repository contains Apache Airflow DAGs for executing keeper operations for Ricochet Exchange. Usage You will need to run this us

Ricochet Exchange 5 May 24, 2022
This is the source code of the solver used to compete in the International Timetabling Competition 2019.

ITC2019 Solver This is the source code of the solver used to compete in the International Timetabling Competition 2019. Building .NET Core (2.1 or hig

Edon Gashi 8 Jan 22, 2022
Torch code for our CVPR 2018 paper "Residual Dense Network for Image Super-Resolution" (Spotlight)

Residual Dense Network for Image Super-Resolution This repository is for RDN introduced in the following paper Yulun Zhang, Yapeng Tian, Yu Kong, Bine

Yulun Zhang 494 Dec 30, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Node-level Graph Regression with Deep Gaussian Process Models

Node-level Graph Regression with Deep Gaussian Process Models Prerequests our implementation is mainly based on tensorflow 1.x and gpflow 1.x: python

1 Jan 16, 2022
A Python package for faster, safer, and simpler ML processes

Bender 🤖 A Python package for faster, safer, and simpler ML processes. Why use bender? Bender will make your machine learning processes, faster, safe

Otovo 6 Dec 13, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

2 Jan 11, 2022
TICC is a python solver for efficiently segmenting and clustering a multivariate time series

TICC TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regulariz

406 Dec 12, 2022
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
An open-source, low-cost, image-based weed detection device for fallow scenarios.

Welcome to the OpenWeedLocator (OWL) project, an opensource hardware and software green-on-brown weed detector that uses entirely off-the-shelf compon

Guy Coleman 145 Jan 05, 2023
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation

ArSSR This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonan

Qing Wu 19 Dec 12, 2022