Open AI's Python library

Overview

OpenAI Python Library

The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It includes a pre-defined set of classes for API resources that initialize themselves dynamically from API responses which makes it compatible with a wide range of versions of the OpenAI API.

Documentation

See the OpenAI API docs.

Installation

You don't need this source code unless you want to modify the package. If you just want to use the package, just run:

pip install --upgrade openai

Install from source with:

python setup.py install

Usage

The library needs to be configured with your account's secret key which is available on the website. Either set it as the OPENAI_API_KEY environment variable before using the library:

export OPENAI_API_KEY='sk-...'

Or set openai.api_key to its value:

import openai
openai.api_key = "sk-..."

# list engines
engines = openai.Engine.list()

# print the first engine's id
print(engines.data[0].id)

# create a completion
completion = openai.Completion.create(engine="ada", prompt="Hello world")

# print the completion
print(completion.choices[0].text)

Microsoft Azure Endpoints

In order to use the library with Microsoft Azure endpoints, you need to set the api_type, api_base and api_version in addition to the api_key. The api_type must be set to 'azure' and the others correspond to the properites of your endpoint. In addition, the deployment name must be passed as the engine parameter.

import openai
openai.api_type = "azure"
openai.api_key = "..."
openai.api_base = "https://example-endpoint.openai.azure.com"
openai.api_version = "2021-11-01-preview"

# create a completion
completion = openai.Completion.create(engine="deployment-namme", prompt="Hello world")

# print the completion
print(completion.choices[0].text)

# create a search and pass the deployment-name as the engine Id.
search = openai.Engine(id="deployment-namme").search(documents=["White House", "hospital", "school"], query ="the president")

# print the search
print(search)

Please note that for the moment, the Microsoft Azure endpoints can only be used for completion and search operations.

Command-line interface

This library additionally provides an openai command-line utility which makes it easy to interact with the API from your terminal. Run openai api -h for usage.

# list engines
openai api engines.list

# create a completion
openai api completions.create -e ada -p "Hello world"

Example code

Examples of how to use embeddings, fine tuning, semantic search, and codex can be found in the examples folder.

Embeddings

In the OpenAI Python library, an embedding represents a text string as a fixed-length vector of floating point numbers. Embeddings are designed to measure the similarity or relevance between text strings.

To get an embedding for a text string, you can use the embeddings method as follows in Python:

import openai
openai.api_key = "sk-..."  # supply your API key however you choose

# choose text to embed
text_string = "sample text"

# choose an embedding
model_id = "text-similarity-davinci-001"

# compute the embedding of the text
embedding = openai.Embedding.create(input=text_string, engine=model_id)['data'][0]['embedding']

An example of how to call the embeddings method is shown in the get embeddings notebook.

Examples of how to use embeddings are shared in the following Jupyter notebooks:

For more information on embeddings and the types of embeddings OpenAI offers, read the embeddings guide in the OpenAI documentation.

Fine tuning

Fine tuning a model on training data can both improve the results (by giving the model more examples to learn from) and reduce the cost & latency of API calls (by reducing the need to include training examples in prompts).

Examples of fine tuning are shared in the following Jupyter notebooks:

For more information on fine tuning, read the fine-tuning guide in the OpenAI documentation.

Requirements

  • Python 3.7.1+

In general we want to support the versions of Python that our customers are using, so if you run into issues with any version issues, please let us know at [email protected].

Credit

This library is inspired from the Stripe Python Library.

Owner
Pavan Ananth Sharma
Ethereum 2.0
Pavan Ananth Sharma
Bottleneck Transformers for Visual Recognition

Bottleneck Transformers for Visual Recognition Experiments Model Params (M) Acc (%) ResNet50 baseline (ref) 23.5M 93.62 BoTNet-50 18.8M 95.11% BoTNet-

Myeongjun Kim 236 Jan 03, 2023
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM)

Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM) Introduction The average lifetime of the $D^{0}$ me

Son Gyo Jung 1 Dec 17, 2021
Fast and robust clustering of point clouds generated with a Velodyne sensor.

Depth Clustering This is a fast and robust algorithm to segment point clouds taken with Velodyne sensor into objects. It works with all available Velo

Photogrammetry & Robotics Bonn 957 Dec 21, 2022
PixelPyramids: Exact Inference Models from Lossless Image Pyramids (ICCV 2021)

PixelPyramids: Exact Inference Models from Lossless Image Pyramids This repository contains the PyTorch implementation of the paper PixelPyramids: Exa

Visual Inference Lab @TU Darmstadt 8 Dec 11, 2022
Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Ian Pointer 368 Dec 17, 2022
Convert game ISO and archives to CD CHD for emulation on Linux.

tochd Convert game ISO and archives to CD CHD for emulation. Author: Tuncay D. Source: https://github.com/thingsiplay/tochd Releases: https://github.c

Tuncay 20 Jan 02, 2023
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs

catsetmat The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs To be able to run it, add catsetmat to PYTHONPATH H

2 Dec 19, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 04, 2023
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
Source code for the NeurIPS 2021 paper "On the Second-order Convergence Properties of Random Search Methods"

Second-order Convergence Properties of Random Search Methods This repository the paper "On the Second-order Convergence Properties of Random Search Me

Adamos Solomou 0 Nov 13, 2021
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference

RawVSR This repo contains the official codes for our paper: Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference Xiaoh

Xiaohong Liu 23 Oct 08, 2022
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

This is a Pytorch implementation of Janai, J., Güney, F., Ranjan, A., Black, M. and Geiger, A., Unsupervised Learning of Multi-Frame Optical Flow with

Anurag Ranjan 110 Nov 02, 2022
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
Resources related to EMNLP 2021 paper "FAME: Feature-Based Adversarial Meta-Embeddings for Robust Input Representations"

FAME: Feature-based Adversarial Meta-Embeddings This is the companion code for the experiments reported in the paper "FAME: Feature-Based Adversarial

Bosch Research 11 Nov 27, 2022
Visual Question Answering in Pytorch

Visual Question Answering in pytorch /!\ New version of pytorch for VQA available here: https://github.com/Cadene/block.bootstrap.pytorch This repo wa

Remi 672 Jan 01, 2023
The repository contain code for building compiler using puthon.

Building Compiler This is a python implementation of JamieBuild's "Super Tiny Compiler" Overview JamieBuilds developed a wonderfully educative compile

Shyam Das Shrestha 1 Nov 21, 2021
A collection of easy-to-use, ready-to-use, interesting deep neural network models

Interesting and reproducible research works should be conserved. This repository wraps a collection of deep neural network models into a simple and un

Aria Ghora Prabono 16 Jun 16, 2022