AntiFuzz: Impeding Fuzzing Audits of Binary Executables

Related tags

Deep Learningantifuzz
Overview

AntiFuzz: Impeding Fuzzing Audits of Binary Executables

Get the paper here: https://www.usenix.org/system/files/sec19-guler.pdf

Usage:

The python script antifuzz_generate.py generates a "antifuzz.h" file that you need to include in your C project (see chapter below). The script takes multiple arguments to define which features you want to activate.

To disable all features, supply:

  --disable-all

To break assumption (A), i.e. to break coverage-guided fuzzing, use:

  --enable-anti-coverage

You can specify how many random BBs and random constrain functions you want to have by supplying "--anti-coverage [num]" (default: 10000).

To break assumption (B), i.e. to prevent fuzzers from detecting crashes, use:

  --signal --crash-action exit

To break assumption (C), i.e. to decrease the performance of the application when being fuzzed, use:

  --enable-sleep --signal

Additionaly, you can supply "--sleep [ms]" to set the length of the sleep in milliseconds (default: 750). You can also replace the crash behavior by supplying "--crash-action timeout" to replace every crash with a timeout.

To break assumption (D), i.e. to boggle down symbolic execution engines, use:

  --hash-cmp --enable-encrypt-decrypt

To enable all features, use:

  --enable-anti-coverage --signal --crash-action exit --enable-sleep --signal --hash-cmp --enable-encrypt-decrypt

Demo

To test it out, we supplied a demo application called antifuzz_test.c that just checks for "crsh" with single byte comparisons, and crashes if that's the case. It configures itself to fit the generated antifuzz header file, i.e. when hash comparisons are demanded via antifuzz_generate.py, antifuzz_test will compare the hashes instead of the plain constants.

First, generate the antifuzz.h file:

python antifuzz_generate.py --enable-anti-coverage --signal --crash-action exit --enable-sleep --signal --hash-cmp --enable-encrypt-decrypt

Next, compile the demo application with afl-gcc after installing AFL 2.52b (note that this may take minutes (!) depending on the number of random BBs added):

afl-gcc antifuzz_test.c -o antifuzz_test 

Run it in AFL to test it out:

mkdir inp; echo 1234 > inp/a.txt; afl-fuzz -i inp/ -o /dev/shm/out -- ./antifuzz_test @@

If you enabled all options, AFL may take a long time to start because the application is slowed down (to break assumption (C))

Protecting Applications

To include it in your own C project, follow these instructions (depending on your use-case and application, you might want to skip some of them):

1.

Add

#include "antifuzz.h"

to the header.

2.

Jump to the line that opens the (main) input file, the one that an attacker might target as an attack vector, and call

antifuzz_init("file_name_here", FLAG_ALL); 

This initializes AntiFuzz, checks if overwriting signals is possible, checks if the application is ptrace'd, puts the input through encryption and decryption, jumps through random BBs, etc.

3.

Find all lines and blocks of code that deal with malformed input files or introduce those yourself. It's often the case that these lines already exist to print some kind of error or warning message (e.g. "this is not a valid ... file"). Add a call to

antifuzz_onerror()

everywhere you deem appropriate.

4.

Find comparisons to constants (e.g. magic bytes) that you think are important for this file format, and change the comparison to hash comparisons. Add your constant to antifuzz_constants.tpl.h like this:

char *antifuzzELF = "ELF";

Our generator script will automatically change these lines to their respective SHA512 hashes when generating the final header file, you do not have to do this manually. Now change the lines from (as an example):

if(strcmp(header, "ELF") == 0)

to

if(antifuzz_str_equal(header, antifuzzELF))

See antifuzz.tpl.h for more comparison functions.

5.

If you have more data that you want to protect from symbolic execution, use:

antifuzz_encrypt_decrypt_buf(char *ptr, size_t fileSize) 
Owner
Chair for Sys­tems Se­cu­ri­ty
Chair for Sys­tems Se­cu­ri­ty
Offical code for the paper: "Growing 3D Artefacts and Functional Machines with Neural Cellular Automata" https://arxiv.org/abs/2103.08737

Growing 3D Artefacts and Functional Machines with Neural Cellular Automata Video of more results: https://www.youtube.com/watch?v=-EzztzKoPeo Requirem

Robotics Evolution and Art Lab 51 Jan 01, 2023
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
RLHive: a framework designed to facilitate research in reinforcement learning.

RLHive is a framework designed to facilitate research in reinforcement learning. It provides the components necessary to run a full RL experiment, for both single agent and multi agent environments.

88 Jan 05, 2023
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset

关于实现的一点说明 山东大学 2020级 苏博南 www.subonan.com 文件说明 tools.py 这里面主要有两个函数: resize(a, lenb) 这其实是我找同学写的一个小算法hhh。给出一个$28\times 28$的方阵a,返回一个$lenb\times lenb$的方阵。因

ぼっけなす 2 Aug 29, 2022
Calibrated Hyperspectral Image Reconstruction via Graph-based Self-Tuning Network.

mask-uncertainty-in-HSI This repository contains the testing code and pre-trained models for the paper Calibrated Hyperspectral Image Reconstruction v

JIAMIAN WANG 9 Dec 29, 2022
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022
This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

75 Dec 02, 2022
[ICLR 2022 Oral] F8Net: Fixed-Point 8-bit Only Multiplication for Network Quantization

F8Net Fixed-Point 8-bit Only Multiplication for Network Quantization (ICLR 2022 Oral) OpenReview | arXiv | PDF | Model Zoo | BibTex PyTorch implementa

Snap Research 76 Dec 13, 2022
Learning from graph data using Keras

Steps to run = Download the cora dataset from this link : https://linqs.soe.ucsc.edu/data unzip the files in the folder input/cora cd code python eda

Mansar Youness 64 Nov 16, 2022
MEDS: Enhancing Memory Error Detection for Large-Scale Applications

MEDS: Enhancing Memory Error Detection for Large-Scale Applications Prerequisites cmake and clang Build MEDS supporting compiler $ make Build Using Do

Secomp Lab at Purdue University 34 Dec 14, 2022
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022
L-Verse: Bidirectional Generation Between Image and Text

Far beyond learning long-range interactions of natural language, transformers are becoming the de-facto standard for many vision tasks with their power and scalabilty

Kim, Taehoon 102 Dec 21, 2022
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib

Model Oriented 590 Dec 26, 2022
TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.

A Brain Tumor Detection and Classification Model built using RESNET50 architecture. The model is also deployed as a web application using Flask framework.

Pranav Khurana 0 Aug 17, 2021
Java and SHACL code commented in the paper "Towards compliance checking in reified I/O logic via SHACL" submitted to ICAIL 2021

shRIOL The subfolder shRIOL contains Java files to execute the SHACL files on the OWL ontology. To compile the Java files: "javac -cp ./src/;./lib/* -

1 Dec 06, 2022
Adaptive Prototype Learning and Allocation for Few-Shot Segmentation (CVPR 2021)

ASGNet The code is for the paper "Adaptive Prototype Learning and Allocation for Few-Shot Segmentation" (accepted to CVPR 2021) [arxiv] Overview data/

Gen Li 91 Dec 23, 2022
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

Kent Sommer 297 Dec 26, 2022
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

ASAPP Research 47 Dec 27, 2022