Zero-Cost Proxies for Lightweight NAS

Overview

Zero-Cost-NAS

Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS
tl;dr A single minibatch of data is used to score neural networks for NAS instead of performing full training.

In this README, we provide:

If you have any questions, please open an issue or email us. (last update: 02.02.2021)

Summary

Intro. To perform neural architecture search (NAS), deep neural networks (DNNs) are typically trained until a final validation accuracy is computed and used to compare DNNs to each other and select the best one. However, this is time-consuming because training takes multiple GPU-hours/days/weeks. This is why a proxy for final accuracy is often used to speed up NAS. Typically, this proxy is a reduced form of training (e.g. EcoNAS) where the number of epochs is reduced, a smaller model is used or the training data is subsampled.

Proxies. Instead, we propose a series of "zero-cost" proxies that use a single-minibatch of data to score a DNN. These metrics are inspired by recent pruning-at-initialization literature, but are adapted to score an entire DNN and work within a NAS setting. When compared against econas (see orange pentagon in plot below), our zero-cost metrics take ~1000X less time to run but are better-correlated with final validation accuracy (especially synflow and jacob_cov), making them better (and much cheaper!) proxies for use within NAS. Even when EcoNAS is tuned specifically for NAS-Bench-201 (see econas+ purple circle in the plot), our vote zero-cost proxy is still better-correlated and is 3 orders of magnitude cheaper to compute.

Figure 1: Correlation of validation accuracy to final accuracy during the first 12 epochs of training (blue line) for three CIFAR-10 on the NAS-Bench-201 search space. Zero-cost and EcoNAS proxies are also labeled for comparison.

zero-cost vs econas

Zero-Cost NAS We use the zero-cost metrics to enhance 4 existing NAS algorithms, and we test it out on 3 different NAS benchmarks. For all cases, we achieve a new SOTA (state of the art result) in terms of search speed. We incorporate zero-cost proxies in two ways: (1) warmup: Use proxies to initialize NAS algorithms, (2) move proposal: Use proxies to improve the selection of the next model for evaluation. As Figure 2 shows, there is a significant speedup to all evaluated NAS algorithms.

Figure 2: Zero-Cost warmup and move proposal consistently improves speed and accuracy of 4 different NAS algorithms.

Zero-Cost-NAS speedup

For more details, please take a look at our paper!

Running the Code

  • Install PyTorch for your system (v1.5.0 or later).
  • Install the package: pip install . (add -e for editable mode) -- note that all dependencies other than pytorch will be automatically installed.

API

The main function is find_measures below. Given a neural net and some information about the input data (dataloader) and loss function (loss_fn) it returns an array of zero-cost proxy metrics.

def find_measures(net_orig,                  # neural network
                  dataloader,                # a data loader (typically for training data)
                  dataload_info,             # a tuple with (dataload_type = {random, grasp}, number_of_batches_for_random_or_images_per_class_for_grasp, number of classes)
                  device,                    # GPU/CPU device used
                  loss_fn=F.cross_entropy,   # loss function to use within the zero-cost metrics
                  measure_names=None,        # an array of measure names to compute, if left blank, all measures are computed by default
                  measures_arr=None):        # [not used] if the measures are already computed but need to be summarized, pass them here

The available zero-cost metrics are in the measures directory. You can add new metrics by simply following one of the examples then registering the metric in the load_all function. More examples of how to use this function can be found in the code to reproduce results (below). You can also modify data loading functions in p_utils.py

Reproducing Results

NAS-Bench-201

  1. Download the NAS-Bench-201 dataset and put in the data directory in the root folder of this project.
  2. Run python nasbench2_pred.py with the appropriate cmd-line options -- a pickle file is produced with zero-cost metrics (see notebooks folder on how to use the pickle file.
  3. Note that you need to manually download ImageNet16 and put in _datasets/ImageNet16 directory in the root folder. CIFAR-10/100 will be automatically downloaded.

NAS-Bench-101

  1. Download the data directory and save it to the root folder of this repo. This contains pre-cached info from the NAS-Bench-101 repo.
  2. [Optional] Download the NAS-Bench-101 dataset and put in the data directory in the root folder of this project and also clone the NAS-Bench-101 repo and install the package.
  3. Run python nasbench1_pred.py. Note that this takes a long time to go through ~400k architectures, but precomputed results are in the notebooks folder (with a link to the results).

PyTorchCV

  1. Run python ptcv_pred.py

NAS-Bench-ASR

Coming soon...

NAS with Zero-Cost Proxies

For the full list of NAS algorithms in our paper, we used a different NAS tool which is not publicly released. However, we included a notebook nas_examples.ipynb to show how to use zero-cost proxies to speed up aging evolution and random search methods using both warmup and move proposal.

Citation

@inproceedings{
  abdelfattah2021zerocost,
  title={{Zero-Cost Proxies for Lightweight NAS}},
  author={Mohamed S. Abdelfattah and Abhinav Mehrotra and {\L}ukasz Dudziak and Nicholas D. Lane},
  booktitle={International Conference on Learning Representations (ICLR)},
  year={2021}
}
Owner
SamsungLabs
SAMSUNG
SamsungLabs
State-to-Distribution (STD) Model

State-to-Distribution (STD) Model In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model fo

<a href=[email protected]"> 2 Apr 07, 2022
For medical image segmentation

LeViT_UNet For medical image segmentation Our model is based on LeViT (https://github.com/facebookresearch/LeViT). You'd better gitclone its codes. Th

13 Dec 24, 2022
Unofficial JAX implementations of Deep Learning models

JAX Models Table of Contents About The Project Getting Started Prerequisites Installation Usage Contributing License Contact About The Project The JAX

107 Jan 05, 2023
Full Stack Deep Learning Labs

Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec

Full Stack Deep Learning 1.2k Dec 31, 2022
small collection of functions for neural networks

neurobiba other languages: RU small collection of functions for neural networks. very easy to use! Installation: pip install neurobiba See examples h

4 Aug 23, 2021
This is a Keras implementation of a CNN for estimating age, gender and mask from a camera.

face-detector-age-gender This is a Keras implementation of a CNN for estimating age, gender and mask from a camera. Before run face detector app, expr

Devdreamsolution 2 Dec 04, 2021
✅ How Robust are Fact Checking Systems on Colloquial Claims?. In NAACL-HLT, 2021.

How Robust are Fact Checking Systems on Colloquial Claims? Official PyTorch implementation of our NAACL paper: Byeongchang Kim*, Hyunwoo Kim*, Seokhee

Byeongchang Kim 19 Mar 15, 2022
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval

More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdh

Ayan Kumar Bhunia 22 Aug 27, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 본 repo 는 mAy-I Inc. 팀으로 참가한 2021 인공지능 온라인 경진대회 중 [이미지] 운전 사고 예방을 위한 운전자 부주의 행동 검출 모델] 태스크 수행을 위한 레포지토리입니다. mAy-I 는 과학기술정보통신부가 주최하

Junhyuk Park 9 Dec 01, 2022
DetCo: Unsupervised Contrastive Learning for Object Detection

DetCo: Unsupervised Contrastive Learning for Object Detection arxiv link News Sparse RCNN+DetCo improves from 45.0 AP to 46.5 AP(+1.5) with 3x+ms trai

Enze Xie 234 Dec 18, 2022
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022
Automatic tool focused on deriving metallicities of open clusters

metalcode Automatic tool focused on deriving metallicities of open clusters. Based on the method described in Pöhnl & Paunzen (2010, https://ui.adsabs

2 Dec 13, 2021
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Paddorch 2 Nov 28, 2021
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
source code of Adversarial Feedback Loop Paper

Adversarial Feedback Loop [ArXiv] [project page] Official repository of Adversarial Feedback Loop paper Firas Shama, Roey Mechrez, Alon Shoshan, Lihi

17 Jul 20, 2022
PyTorch3D is FAIR's library of reusable components for deep learning with 3D data

Introduction PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch. Key features include: Data structure for

Facebook Research 6.8k Jan 01, 2023
This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Amortized Assimilation This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems. Abstract: T

4 Aug 16, 2022
[NeurIPS 2021] Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training Code for NeurIPS 2021 paper "Better Safe Than Sorry: Preventing Delu

Lue Tao 29 Sep 20, 2022
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022