Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Overview

Project Name : Steganography-Tools

Made By - Priyansh Sharma

  • Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.
  • This project hides the message with in the image, text file, audio file and video file. In this project, the sender selects a cover file (image, text, audio or video) with secret text and hide it into the cover file by using different efficient algorithm and generate a stego file of same format as our cover file (image, text, audio or video). Then the stego file is sent to the destination with the help of private or public communication networks. On the other side i.e. receiver, the receiver downloads the stego file and by using the appropriate decoding algorithm retrieves the secret text that is hidden in the stego file.

1

Image Steganography ( Hiding TEXT in IMAGE ) :

  • Using Least Significant Bit Insertion we overwrite the LSB bit of actual image with the bit of text message character. At the end of text message we push a delimiter to the message string as a checkpoint useful in decoding function. We encode data in order of Red, then Green and then Blue pixel for the entire message.

Text Steganography ( Hiding TEXT in TEXT ) :

  • In Unicode, there are specific zero-width characters (ZWC). We used four ZWCs for hiding the Secret Message through the Cover Text.

image

  • We get its ascii value and it is incremented or decremented based on if ascii value between 32 and 64 , it is incremented by 48(ascii value for 0) else it is decremented by 48
  • Then xor the the obtained value with 170(binary equivalent-10101010)
  • Convert the obtained number from first two step to its binary equivalent then add "0011" if it earlier belonged to ascii value between 32 and 64 else add "0110" making it 12 bit for each character.
  • With the final binary equivalent we also 111111111111 as delimiter to find the end of message
  • Now from 12 bit representing each character every 2 bit is replaced with equivalent ZWCs according to the table. Each character is hidden after a word in the cover text.

Audio Steganography ( Hiding TEXT in AUDIO ) :

  • For encoding we have modified the LSB Algorithm, for that we take each frame byte of the converting it to 8 bit format then check for the 4th LSB and see if it matches with the secret message bit. If yes change the 2nd LSB to 0 using logical AND operator between each frame byte and 253(11111101). Else we change the 2nd LSB to 1 using logical AND operation with 253 and then logical OR to change it to 1 and now add secret message bit in LSB for achieving that use logical AND operation between each frame byte of carrier audio and a binary number of 254 (11111110). Then logical OR operation between modified carrier byte and the next bit (0 or 1) from the secret message which resets the LSB of carrier byte.

Video Steganography ( Hiding TEXT in Video ) :

  • In video steganography we have used combination of cryptography and Steganography. We encode the message through two parts
  • We convert plaintext to cipher text for doing so we have used RC4 Encryption Algorithm. RC4 is a stream cipher and variable-length key algorithm. This algorithm encrypts one byte at a time. It has two major parts for encryption and decryption:-
  • KSA(Key-Scheduling Algorithm)- A list S of length 256 is made and the entries of S are set equal to the values from 0 to 255 in ascending order. We ask user for a key and convert it to its equivalent ascii code. S[] is a permutation of 0,1,2....255, now a variable j is assigned as j=(j+S[i]+key[i%key_length) mod 256 and swap S(i) with S(j) and accordingly we get new permutation for the whole keystream according to the key.
  • PRGA(Pseudo random generation Algorithm (Stream Generation)) - Now we take input length of plaintext and initiate loop to generate a keystream byte of equal length. For this we initiate i=0, j=0 now increment i by 1 and mod with 256. Now we add S[i] to j amd mod of it with 256 ,again swap the values. At last step take store keystreambytes which matches as S[(S[i]+S[j]) mod 256] to finally get key stream of length same as plaintext.
  • Now we xor the plaintext with keystream to get the final cipher.

With Further Development In this Project " Steganography Tools", This Project Can be used by Indian army, RAW, Police and Intelligence agency for Special Emergency operation.

🤖 ⚡ scikit-learn tips

🤖 ⚡ scikit-learn tips New tips are posted on LinkedIn, Twitter, and Facebook. 👉 Sign up to receive 2 video tips by email every week! 👈 List of all

Kevin Markham 1.6k Jan 03, 2023
Continuously evaluated, functional, incremental, time-series forecasting

timemachines Autonomous, univariate, k-step ahead time-series forecasting functions assigned Elo ratings You can: Use some of the functionality of a s

Peter Cotton 343 Jan 04, 2023
MLflow App Using React, Hooks, RabbitMQ, FastAPI Server, Celery, Microservices

Katana ML Skipper This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable

Tom Xu 8 Nov 17, 2022
Nixtla is an open-source time series forecasting library.

Nixtla Nixtla is an open-source time series forecasting library. We are helping data scientists and developers to have access to open source state-of-

Nixtla 401 Jan 08, 2023
Machine Learning Model to predict the payment date of an invoice when it gets created in the system.

Payment-Date-Prediction Machine Learning Model to predict the payment date of an invoice when it gets created in the system.

15 Sep 09, 2022
Case studies with Bayesian methods

Case studies with Bayesian methods

Baze Petrushev 8 Nov 26, 2022
Book Item Based Collaborative Filtering

Book-Item-Based-Collaborative-Filtering Collaborative filtering methods are used

Şebnem 3 Jan 06, 2022
Factorization machines in python

Factorization Machines in Python This is a python implementation of Factorization Machines [1]. This uses stochastic gradient descent with adaptive re

Corey Lynch 892 Jan 03, 2023
Open source time series library for Python

PyFlux PyFlux is an open source time series library for Python. The library has a good array of modern time series models, as well as a flexible array

Ross Taylor 2k Jan 02, 2023
Implementation of different ML Algorithms from scratch, written in Python 3.x

Implementation of different ML Algorithms from scratch, written in Python 3.x

Gautam J 393 Nov 29, 2022
Polyglot Machine Learning example for scraping similar news articles.

Polyglot Machine Learning example for scraping similar news articles In this example, we will see how we can work with Machine Learning applications w

MetaCall 15 Mar 28, 2022
A simple machine learning python sign language detection project.

SST Coursework 2022 About the app A python application that utilises the tensorflow object detection algorithm to achieve automatic detection of ameri

Xavier Koh 2 Jun 30, 2022
Bayesian optimization in JAX

Bayesian optimization in JAX

Predictive Intelligence Lab 26 May 11, 2022
A Python toolkit for rule-based/unsupervised anomaly detection in time series

Anomaly Detection Toolkit (ADTK) Anomaly Detection Toolkit (ADTK) is a Python package for unsupervised / rule-based time series anomaly detection. As

Arundo Analytics 888 Dec 30, 2022
Distributed Computing for AI Made Simple

Project Home Blog Documents Paper Media Coverage Join Fiber users email list Uber Open Source 997 Dec 30, 2022

TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models.

TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models. The library is a collection of Keras models

538 Jan 01, 2023
A collection of interactive machine-learning experiments: 🏋️models training + 🎨models demo

🤖 Interactive Machine Learning experiments: 🏋️models training + 🎨models demo

Oleksii Trekhleb 1.4k Jan 06, 2023
A webpage that utilizes machine learning to extract sentiments from tweets.

Tweets_Classification_Webpage The goal of this project is to be able to predict what rating customers on social media platforms would give to products

Ayaz Nakhuda 1 Dec 30, 2021
Simple, fast, and parallelized symbolic regression in Python/Julia via regularized evolution and simulated annealing

Parallelized symbolic regression built on Julia, and interfaced by Python. Uses regularized evolution, simulated annealing, and gradient-free optimization.

Miles Cranmer 924 Jan 03, 2023
Lightning ⚡️ fast forecasting with statistical and econometric models.

Nixtla Statistical ⚡️ Forecast Lightning fast forecasting with statistical and econometric models StatsForecast offers a collection of widely used uni

Nixtla 2.1k Dec 29, 2022