Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

Related tags

Deep Learningdetr3d
Overview

Object DGCNN & DETR3D

This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110.06922). Our implementations are built on top of MMdetection3D.

Prerequisite

  1. mmcv (https://github.com/open-mmlab/mmcv)

  2. mmdet (https://github.com/open-mmlab/mmdetection)

  3. mmseg (https://github.com/open-mmlab/mmsegmentation)

  4. mmdet3d (https://github.com/open-mmlab/mmdetection3d)

Data

  1. Follow the mmdet3d to process the data.

Train

  1. Downloads the pretrained backbone weights to pretrained/

  2. For example, to train Object-DGCNN with pillar on 8 GPUs, please use

tools/dist_train.sh projects/configs/obj_dgcnn/pillar.py 8

Evaluation using pretrained models

  1. Download the weights accordingly.
Backbone mAP NDS Download
DETR3D, ResNet101 w/ DCN 34.7 42.2 model | log
above, + CBGS 34.9 43.4 model | log
DETR3D, VoVNet on trainval, evaluation on test set 41.2 47.9 model | log
Backbone mAP NDS Download
Object DGCNN, pillar 53.2 62.8 model | log
Object DGCNN, voxel 58.6 66.0 model | log
  1. To test, use
    tools/dist_test.sh projects/configs/obj_dgcnn/pillar_cosine.py /path/to/ckpt 8 --eval=bbox

If you find this repo useful for your research, please consider citing the papers

@inproceedings{
   obj-dgcnn,
   title={Object DGCNN: 3D Object Detection using Dynamic Graphs},
   author={Wang, Yue and Solomon, Justin M.},
   booktitle={2021 Conference on Neural Information Processing Systems ({NeurIPS})},
   year={2021}
}
@inproceedings{
   detr3d,
   title={DETR3D: 3D Object Detection from Multi-view Images via 3D-to-2D Queries},
   author={Wang, Yue and Guizilini, Vitor and Zhang, Tianyuan and Wang, Yilun and Zhao, Hang and and Solomon, Justin M.},
   booktitle={The Conference on Robot Learning ({CoRL})},
   year={2021}
}
Owner
Wang, Yue
Wang, Yue
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022
Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation"

Implicit-Semantic-Response-Alignment Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation" Prerequisites pyt

4 Dec 19, 2022
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

xxxnell 656 Dec 30, 2022
Interactive web apps created using geemap and streamlit

geemap-apps Introduction This repo demostrates how to build a multi-page Earth Engine App using streamlit and geemap. You can deploy the app on variou

Qiusheng Wu 27 Dec 23, 2022
Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers

Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers This is the repo used for human motion prediction with non-autoregress

Idiap Research Institute 26 Dec 14, 2022
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
A Python implementation of global optimization with gaussian processes.

Bayesian Optimization Pure Python implementation of bayesian global optimization with gaussian processes. PyPI (pip): $ pip install bayesian-optimizat

fernando 6.5k Jan 02, 2023
face property detection pytorch

This is the face property train code of project face-detection-project

i am x 2 Oct 18, 2021
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022
PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN in PyTorch PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in READM

Taehoon Kim 1k Jan 04, 2023
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. 🚀 🚀 🚀

TensorLayer Community 2.9k Jan 08, 2023
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
Racing line optimization algorithm in python that uses Particle Swarm Optimization.

Racing Line Optimization with PSO This repository contains a racing line optimization algorithm in python that uses Particle Swarm Optimization. Requi

Parsa Dahesh 6 Dec 14, 2022
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis Andreas Bl

CompVis Heidelberg 36 Dec 25, 2022
Single Image Random Dot Stereogram for Tensorflow

TensorFlow-SIRDS Single Image Random Dot Stereogram for Tensorflow SIRDS is a means to present 3D data in a 2D image. It allows for scientific data di

Greg Peatfield 5 Aug 10, 2022
Problem-943.-ACMP - Problem 943. ACMP

Problem-943.-ACMP В "main.py" расположен вариант моего решения задачи 943 с серв

Konstantin Dyomshin 2 Aug 19, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
RoadMap and preparation material for Machine Learning and Data Science - From beginner to expert.

ML-and-DataScience-preparation This repository has the goal to create a learning and preparation roadMap for Machine Learning Engineers and Data Scien

33 Dec 29, 2022