Automatically erase objects in the video, such as logo, text, etc.

Overview

Video-Auto-Wipe

Read English Introduction:Here

  本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦除模型存在潜在的被利用于侵权行为的隐患,因此我暂时只分享了字幕擦除模型,希望能帮助到大家。
  我后续会持续不断的探索和制作新的生成方向的技术内容。基于生成模型可玩的点还有很多,此项目仅展示了其中一个做落地应用的例子。本项目的模型版权所属为:www.seeprettyface.com ,未获得授权请不要直接用作商业用途。关于算法的细节介绍可以参阅我的研究笔记



效果预览

1. 图标擦除

  图标擦除模型的功能是模型自动感知到视频中图标的位置然后进行擦除,感知图标的方法为在时域上静止不动的小块像素块被视作图标。

1.1 测试1-电视剧的台标、剧名和角标擦除

Image text

查看视频



1.2 测试2-足球赛的台标、状态栏擦除

Image text

查看视频



1.3 测试3-综艺节目的台标、状态栏擦除

Image text

查看视频



1.4 测试4-短视频MV的遮挡图标擦除

Image text

查看视频



1.5 测试5-短视频MV的遮挡水印擦除

Image text

查看视频



1.6 测试6-新闻媒体的台标擦除

Image text

查看视频





2. 动态图标擦除

  动态图标擦除模型的功能是模型自动感知到视频中动态图标的位置然后进行擦除,感知动态图标的方法为在时域上闪烁出现或动态移动的固定像素块被视作动态图标,这个在制作上有一定难度所以还没有对外开放。

2.1 测试1-闪烁出现的特效文字擦除

Image text

Image text

查看视频





3. 字幕擦除

  字幕擦除模型的功能是模型自动感知到视频中字幕的位置然后进行擦除,感知字幕的方法为具有统一样式的文字区域被视作字幕。

3.1 测试1-电影字幕擦除

Image text

查看视频



3.2 测试2-电视剧字幕擦除

Image text

查看视频



3.3 测试3-综艺节目字幕擦除

Image text

查看视频



3.4 测试4-综艺节目特殊字幕擦除

Image text

查看视频



3.5 测试5-网络视频字幕擦除

Image text

查看视频



3.6 测试6-小语种字幕擦除

Image text

查看视频





使用方法

1.环境配置

  torch>1.0
  其他的缺什么依赖就pip install xxx,需要的东西不多

2.运行方法

  1. 下载预训练模型放在pretrained-weight文件夹里;
    预训练模型下载地址:链接:https://pan.baidu.com/s/1ubZHkgkcskS7Bpg8ZbtoRQ 提取码:ricn

  2. 将视频文件和mask文件放在input文件夹里,编辑demo.py(或通过命令行参数)选中对应文件位置;
    输入样例下载地址:https://pan.baidu.com/s/1rfdAwxomCVjTJ1zwl7hu3g 提取码:qk64

  3. 图标擦除任务运行:python demo.py delogo
   字幕擦除任务运行:python demo.py detext



训练方法

训练数据

  1.YoutubeVOS2018数据集;

  2.基于搜集的300余部高清电影制作了2,709部电影片段数据集;
    下载地址:https://pan.baidu.com/s/1CIgJmFmx5iR2JfgAyjVaeg 提取码:xb7o

  3.基于搜集的40余部综艺节目制作了864部综艺片段数据集;
    下载地址:https://pan.baidu.com/s/1lJk6IIWlwxknAie0LlGYOg 提取码:9rd4

训练过程

  第1步. 针对特定任务的时域感知训练;
  第2步. 融合擦除模型的微调训练。

训练配置

最近寻觅到了一种非常简易的制作和训练方法:
  '图标擦除'模型在单卡3090上训练3天;
  '字幕擦除'模型在单卡3090上训练2天;





更多玩法

  这个项目目前还只是做了很短期的尝试,实际上视频擦除可玩的点还有很多,譬如敏感内容(涉黄涉暴等)擦除、广告擦除、指定人/物擦除、背景人擦除等等。只要是能寻找到有像素预测的场景+有像素预测的需求都是“视频擦除”可以玩出花样的情景~

Sample





了解更多

  本人的研究方向是生成模型的应用技术研究。生成技术解决的问题是像素的预测,也就是在一个有缺失/完全缺失的图像棋盘上进行像素的填补/预测,使填补/预测完的图像符合真实图像的规律。基于这种模式可展开的玩法有很多,除了我之前做的数字人生成、视频内容生成等,我们还可以拓展出更多并行的思路出来。
  尽管目前大部分的CV落地项目都集中在感知和识别任务上,而对于重构和生成任务的研发相对较少,但这不应影响我们对于生成技术价值的判断,毕竟生成技术是相对较新、参与人较少,但是应用前景较广的研究方向。我后续将持续致力于探索生成方向的落地型算法研发,欢迎访问我的网站了解这方面最新的研究进展:www.seeprettyface.com

Sample

Owner
seeprettyface.com
seeprettyface.com
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022
A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

Evan 1.3k Jan 02, 2023
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 02, 2022
PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model

samplernn-pytorch A PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model. It's based on the reference implem

DeepSound 261 Dec 14, 2022
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)

MTTS-CAN: Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement Paper Xin Liu, Josh Fromm, Shwetak Patel, Daniel M

Xin Liu 106 Dec 30, 2022
Code for "On Memorization in Probabilistic Deep Generative Models"

On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in

The Alan Turing Institute 3 Jun 09, 2022
Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging This repository contains an implementation

Computational Photography Lab @ SFU 1.1k Jan 02, 2023
Request execution of Galaxy SARS-CoV-2 variation analysis workflows on input data you provide.

SARS-CoV-2 processing requests Request execution of Galaxy SARS-CoV-2 variation analysis workflows on input data you provide. Prerequisites This autom

useGalaxy.eu 17 Aug 13, 2022
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022
Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"

Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor

Nader Akoury 27 Dec 20, 2022
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f

Zhengxia Zou 72 Dec 18, 2022
Computer-Vision-Paper-Reviews - Computer Vision Paper Reviews with Key Summary along Papers & Codes

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 50+ Papers across Computer Visio

Jonathan Choi 2 Mar 17, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Machinalis 380 Nov 05, 2022
Code for "Reconstructing 3D Human Pose by Watching Humans in the Mirror", CVPR 2021 oral

Reconstructing 3D Human Pose by Watching Humans in the Mirror Qi Fang*, Qing Shuai*, Junting Dong, Hujun Bao, Xiaowei Zhou CVPR 2021 Oral The videos a

ZJU3DV 178 Dec 13, 2022
DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing Figure: Joint multi-attribute edits using DyStyle model. Great diversity

74 Dec 03, 2022
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022
Machine learning library for fast and efficient Gaussian mixture models

This repository contains code which implements the Stochastic Gaussian Mixture Model (S-GMM) for event-based datasets Dependencies CMake Premake4 Blaz

Omar Oubari 1 Dec 19, 2022
Breast Cancer Detection 🔬 ITI "AI_Pro" Graduation Project

BreastCancerDetection - This program is designed to predict two severity of abnormalities associated with breast cancer cells: benign and malignant. Mammograms from MIAS is preprocessed and features

6 Nov 29, 2022
AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022