Repository for Project Insight: NLP as a Service

Overview

Project Insight

NLP as a Service

Project Insight

GitHub issues GitHub forks Github Stars GitHub license Code style: black

Contents

  1. Introduction
  2. Installation
  3. Project Details
  4. License

Introduction

Project Insight is designed to create NLP as a service with code base for both front end GUI (streamlit) and backend server (FastApi) the usage of transformers models on various downstream NLP task.

The downstream NLP tasks covered:

  • News Classification

  • Entity Recognition

  • Sentiment Analysis

  • Summarization

  • Information Extraction To Do

The user can select different models from the drop down to run the inference.

The users can also directly use the backend fastapi server to have a command line inference.

Features of the solution

  • Python Code Base: Built using Fastapi and Streamlit making the complete code base in Python.
  • Expandable: The backend is desinged in a way that it can be expanded with more Transformer based models and it will be available in the front end app automatically.
  • Micro-Services: The backend is designed with a microservices architecture, with dockerfile for each service and leveraging on Nginx as a reverse proxy to each independently running service.
    • This makes it easy to update, manitain, start, stop individual NLP services.

Installation

  • Clone the Repo.
  • Run the Docker Compose to spin up the Fastapi based backend service.
  • Run the Streamlit app with the streamlit run command.

Setup and Documentation

  1. Download the models

    • Download the models from here
    • Save them in the specific model folders inside the src_fastapi folder.
  2. Running the backend service.

    • Go to the src_fastapi folder
    • Run the Docker Compose comnand
    $ cd src_fastapi
    src_fastapi:~$ sudo docker-compose up -d
  3. Running the frontend app.

    • Go to the src_streamlit folder
    • Run the app with the streamlit run command
    $ cd src_streamlit
    src_streamlit:~$ streamlit run NLPfily.py
  4. Access to Fastapi Documentation: Since this is a microservice based design, every NLP task has its own seperate documentation

Project Details

Demonstration

Project Insight Demo

Directory Details

  • Front End: Front end code is in the src_streamlit folder. Along with the Dockerfile and requirements.txt

  • Back End: Back End code is in the src_fastapi folder.

    • This folder contains directory for each task: Classification, ner, summary...etc
    • Each NLP task has been implemented as a microservice, with its own fastapi server and requirements and Dockerfile so that they can be independently mantained and managed.
    • Each NLP task has its own folder and within each folder each trained model has 1 folder each. For example:
    - sentiment
        > app
            > api
                > distilbert
                    - model.bin
                    - network.py
                    - tokeniser files
                >roberta
                    - model.bin
                    - network.py
                    - tokeniser files
    
    • For each new model under each service a new folder will have to be added.

    • Each folder model will need the following files:

      • Model bin file.
      • Tokenizer files
      • network.py Defining the class of the model if customised model used.
    • config.json: This file contains the details of the models in the backend and the dataset they are trained on.

How to Add a new Model

  1. Fine Tune a transformer model for specific task. You can leverage the transformers-tutorials

  2. Save the model files, tokenizer files and also create a network.py script if using a customized training network.

  3. Create a directory within the NLP task with directory_name as the model name and save all the files in this directory.

  4. Update the config.json with the model details and dataset details.

  5. Update the <service>pro.py with the correct imports and conditions where the model is imported. For example for a new Bert model in Classification Task, do the following:

    • Create a new directory in classification/app/api/. Directory name bert.

    • Update config.json with following:

      "classification": {
      "model-1": {
          "name": "DistilBERT",
          "info": "This model is trained on News Aggregator Dataset from UC Irvin Machine Learning Repository. The news headlines are classified into 4 categories: **Business**, **Science and Technology**, **Entertainment**, **Health**. [New Dataset](https://archive.ics.uci.edu/ml/datasets/News+Aggregator)"
      },
      "model-2": {
          "name": "BERT",
          "info": "Model Info"
      }
      }
    • Update classificationpro.py with the following snippets:

      Only if customized class used

      from classification.bert import BertClass

      Section where the model is selected

      if model == "bert":
          self.model = BertClass()
          self.tokenizer = BertTokenizerFast.from_pretrained(self.path)

License

This project is licensed under the GPL-3.0 License - see the LICENSE.md file for details

Owner
Abhishek Kumar Mishra
Eat, Sleep, Pray, and Code * An Operations Innovation Lead at IHS Markit during working hours. * Love to read manga and cook new cuisines.
Abhishek Kumar Mishra
Persian-lexicon - A lexicon of 70K unique Persian (Farsi) words

Persian Lexicon This repo uses Uppsala Persian Corpus (UPC) to construct a lexic

Saman Vaisipour 7 Apr 01, 2022
Simple text to phones converter for multiple languages

Phonemizer -- foʊnmaɪzɚ The phonemizer allows simple phonemization of words and texts in many languages. Provides both the phonemize command-line tool

CoML 762 Dec 29, 2022
SentimentArcs: a large ensemble of dozens of sentiment analysis models to analyze emotion in text over time

SentimentArcs - Emotion in Text An end-to-end pipeline based on Jupyter notebooks to detect, extract, process and anlayze emotion over time in text. E

jon_chun 14 Dec 19, 2022
Continuously update some NLP practice based on different tasks.

NLP_practice We will continuously update some NLP practice based on different tasks. prerequisites Software pytorch = 1.10 torchtext = 0.11.0 sklear

0 Jan 05, 2022
This is the offline-training-pipeline for our project.

offline-training-pipeline This is the offline-training-pipeline for our project. We adopt the offline training and online prediction Machine Learning

0 Apr 22, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling This repository contains PyTorch evaluation code, training code and pretrain

Facebook Research 94 Oct 26, 2022
Healthsea is a spaCy pipeline for analyzing user reviews of supplementary products for their effects on health.

Welcome to Healthsea ✨ Create better access to health with spaCy. Healthsea is a pipeline for analyzing user reviews to supplement products by extract

Explosion 75 Dec 19, 2022
GrammarTagger — A Neural Multilingual Grammar Profiler for Language Learning

GrammarTagger — A Neural Multilingual Grammar Profiler for Language Learning GrammarTagger is an open-source toolkit for grammatical profiling for lan

Octanove Labs 27 Jan 05, 2023
This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Common Voice Utils This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims t

Francis Tyers 40 Dec 20, 2022
Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources (NAACL-2021).

Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources Description This is the repository for the paper Unifying Cross-

Sapienza NLP group 16 Sep 09, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
The swas programming language

The Swas programming language This is a language that was made for fun. Installation Step 0: Make sure you have python installed Step 1. Clone this re

Swas.py 19 Jul 18, 2022
自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器

ja-timex 自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器 概要 ja-timex は、現代日本語で書かれた自然文に含まれる時間情報表現を抽出しTIMEX3と呼ばれるアノテーション仕様に変換することで、プログラムが利用できるような形に規格化するルールベースの解析器です。

Yuki Okuda 116 Nov 09, 2022
A simple Streamlit App to classify swahili news into different categories.

Swahili News Classifier Streamlit App A simple app to classify swahili news into different categories. Installation Install all streamlit requirements

Davis David 4 May 01, 2022
A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework.

Unpacker Karton Service A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework. This project is

c3rb3ru5 45 Jan 05, 2023
[KBS] Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks

#Sentic GCN Introduction This repository was used in our paper: Aspect-Based Sentiment Analysis via Affective Knowledge Enhanced Graph Convolutional N

Akuchi 35 Nov 16, 2022
Use Tensorflow2.7.0 Build OpenAI'GPT-2

TF2_GPT-2 Use Tensorflow2.7.0 Build OpenAI'GPT-2 使用最新tensorflow2.7.0构建openai官方的GPT-2 NLP模型 优点 使用无监督技术 拥有大量词汇量 可实现续写(堪比“xx梦续写”) 实现对话后续将应用于FloatTech的Bot

Watermelon 9 Sep 13, 2022
Rhyme with AI

Local development Create a conda virtual environment and activate it: conda env create --file environment.yml conda activate rhyme-with-ai Install the

GoDataDriven 28 Nov 21, 2022
Applying "Load What You Need: Smaller Versions of Multilingual BERT" to LaBSE

smaller-LaBSE LaBSE(Language-agnostic BERT Sentence Embedding) is a very good method to get sentence embeddings across languages. But it is hard to fi

Jeong Ukjae 13 Sep 02, 2022