TEACh is a dataset of human-human interactive dialogues to complete tasks in a simulated household environment.

Related tags

Text Data & NLPteach
Overview

TEACh

Task-driven Embodied Agents that Chat

Aishwarya Padmakumar*, Jesse Thomason*, Ayush Shrivastava, Patrick Lange, Anjali Narayan-Chen, Spandana Gella, Robinson Piramuthu, Gokhan Tur, Dilek Hakkani-Tur

TEACh is a dataset of human-human interactive dialogues to complete tasks in a simulated household environment. The code is licensed under the MIT License (see SOFTWARELICENSE), images are licensed under Apache 2.0 (see IMAGESLICENSE) and other data files are licensed under CDLA-Sharing 1.0 (see DATALICENSE). Please include appropriate licensing and attribution when using our data and code, and please cite our paper.

Prerequisites

  • python3 >=3.7,<=3.8
  • python3.x-dev, example: sudo apt install python3.8-dev
  • tmux, example: sudo apt install tmux
  • xorg, example: sudo apt install xorg openbox
  • ffmpeg, example: sudo apt install ffmpeg

Installation

pip install -r requirements.txt
pip install -e .

Downloading the dataset

Run the following script:

teach_download 

This will download and extract the archive files (experiment_games.tar.gz, all_games.tar.gz, images_and_states.tar.gz, edh_instances.tar.gz & tfd_instances.tar.gz) in the default directory (/tmp/teach-dataset).
Optional arguments:

  • -d/directory: The location to store the dataset into. Default=/tmp/teach-dataset.
  • -se/--skip-extract: If set, skip extracting archive files.
  • -sd/--skip-download: If set, skip downloading archive files.
  • -f/--file: Specify the file name to be retrieved from S3 bucket.

Remote Server Setup

If running on a remote server without a display, the following setup will be needed to run episode replay, model inference of any model training that invokes the simulator (student forcing / RL).

Start an X-server

tmux
sudo python ./bin/startx.py

Exit the tmux session (CTRL+B, D). Any other commands should be run in the main terminal / different sessions.

Replaying episodes

Most users should not need to do this since we provide this output in images_and_states.tar.gz.

The following steps can be used to read a .json file of a gameplay session, play it in the AI2-THOR simulator, and at each time step save egocentric observations of the Commander and Driver (Follower in the paper). It also saves the target object panel and mask seen by the Commander, and the difference between current and initial state.

Replaying a single episode locally, or in a new tmux session / main terminal of remote headless server:

teach_replay \
--game_fn /path/to/game/file \
--write_frames_dir /path/to/desired/output/images/dir \
--write_frames \
--write_states \
--status-out-fn /path/to/desired/output/status/file.json

Note that --status-out-fn must end in .json Also note that the script will by default not replay sessions for which an output subdirectory already exists under --write-frames-dir Additionally, if the file passed to --status-out-fn already exists, the script will try to resume files not marked as replayed in that file. It will error out if there is a mismatch between the status file and output directories on which sessions have been previously played. It is recommended to use a new --write-frames-dir and new --status-out-fn for additional runs that are not intended to resume from a previous one.

Replay all episodes in a folder locally, or in a new tmux session / main terminal of remote headless server:

teach_replay \
--game_dir /path/to/dir/containing/.game.json/files \
--write_frames_dir /path/to/desired/output/images/dir \
--write_frames \
--write_states \
--num_processes 50 \
--status-out-fn /path/to/desired/output/status/file.json

To generate a video, additionally specify --create_video. Note that for images to be saved, --write_images must be specified and --write-frames-dir must be provided. For state changes to be saved, --write_states must be specified and --write_frames_dir must be provided.

Evaluation

We include sample scripts for inference and calculation of metrics. teach_inference and teach_eval. teach_inference is a wrapper that implements loading EDH instance, interacting with the simulator as well as writing the game file and predicted action sequence as JSON files after each inference run. It dynamically loads the model based on the --model_module and --model_class arguments. Your model has to implement teach.inference.teach_model.TeachModel. See teach.inference.sample_model.SampleModel for an example implementation which takes random actions at every time step.

After running teach_inference, you use teach_eval to compute the metrics based output data produced by teach_inference.

Sample run:

export DATA_DIR=/path/to/data/with/games/and/edh_instances/as/subdirs (Default in Downloading is /tmp/teach-dataset)
export OUTPUT_DIR=/path/to/output/folder/for/split
export METRICS_FILE=/path/to/output/metrics/file_without_extension

teach_inference \
    --data_dir $DATA_DIR \
    --output_dir $OUTPUT_DIR \
    --split valid_seen \
    --metrics_file $METRICS_FILE \
    --model_module teach.inference.sample_model \
    --model_class SampleModel

teach_eval \
    --data_dir $DATA_DIR \
    --inference_output_dir $OUTPUT_DIR \
    --split valid_seen \
    --metrics_file $METRICS_FILE

Security

See CONTRIBUTING for more information.

License

The code is licensed under the MIT License (see SOFTWARELICENSE), images are licensed under Apache 2.0 (see IMAGESLICENSE) and other data files are licensed under CDLA-Sharing 1.0 (see DATALICENSE).

Owner
Alexa
Alexa
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 37 Jan 04, 2023
A Lightweight NLP Data Loader for All Deep Learning Frameworks in Python

LineFlow: Framework-Agnostic NLP Data Loader in Python LineFlow is a simple text dataset loader for NLP deep learning tasks. LineFlow was designed to

TofuNLP 177 Jan 04, 2023
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.data: Generic data loaders, abstractions, and iterators for text (including vocabulary and word vecto

3.2k Dec 30, 2022
Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents

Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents [Project Page] [Paper] [Video] Wenlong Huang1, Pieter Abbee

Wenlong Huang 114 Dec 29, 2022
BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

303 Dec 17, 2022
This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular intervals.It sends out the most recent news at random!

Nepali-news-notifier This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular in

Sachit Yadav 1 Feb 11, 2022
Natural Language Processing library built with AllenNLP 🌲🌱

Custom Natural Language Processing with big and small models 🌲🌱

Recognai 65 Sep 13, 2022
Associated Repository for "Translation between Molecules and Natural Language"

MolT5: Translation between Molecules and Natural Language Associated repository for "Translation between Molecules and Natural Language". Table of Con

67 Dec 15, 2022
Hostapd-mac-tod-acl - Setup a hostapd AP with MAC ToD ACL

A brief explanation This script provides a quick way to setup a Time-of-day (Tod

2 Feb 03, 2022
A Python module made to simplify the usage of Text To Speech and Speech Recognition.

Nav Module The solution for voice related stuff in Python Nav is a Python module which simplifies voice related stuff in Python. Just import the Modul

Snm Logic 1 Dec 20, 2021
Visual Automata is a Python 3 library built as a wrapper for Caleb Evans' Automata library to add more visualization features.

Visual Automata Copyright 2021 Lewi Lie Uberg Released under the MIT license Visual Automata is a Python 3 library built as a wrapper for Caleb Evans'

Lewi Uberg 55 Nov 17, 2022
Clone a voice in 5 seconds to generate arbitrary speech in real-time

This repository is forked from Real-Time-Voice-Cloning which only support English. English | 中文 Features 🌍 Chinese supported mandarin and tested with

Weijia Chen 25.6k Jan 06, 2023
This repository contains examples of Task-Informed Meta-Learning

Task-Informed Meta-Learning This repository contains examples of Task-Informed Meta-Learning (paper). We consider two tasks: Crop Type Classification

10 Dec 19, 2022
Code for ACL 2020 paper "Rigid Formats Controlled Text Generation"

SongNet SongNet: SongCi + Song (Lyrics) + Sonnet + etc. @inproceedings{li-etal-2020-rigid, title = "Rigid Formats Controlled Text Generation",

Piji Li 212 Dec 17, 2022
Uncomplete archive of files from the European Nopsled Team

European Nopsled CTF Archive This is an archive of collected material from various Capture the Flag competitions that the European Nopsled team played

European Nopsled 4 Nov 24, 2021
DiY Oxygen Concentrator based on the OxiKit

M19O2 DiY Oxygen Concentrator based on / inspired by the OxiKit, OpenOx, Marut, RepRap and Project Apollo platforms. About Read about the project on H

Maker's Asylum 62 Dec 22, 2022
硕士期间自学的NLP子任务,供学习参考

NLP_Chinese_down_stream_task 自学的NLP子任务,供学习参考 任务1 :短文本分类 (1).数据集:THUCNews中文文本数据集(10分类) (2).模型:BERT+FC/LSTM,Pytorch实现 (3).使用方法: 预训练模型使用的是中文BERT-WWM, 下载地

12 May 31, 2022
This Project is based on NLTK It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its antonyms, its synonyms

This Project is based on NLTK(Natural Language Toolkit) It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its

SaiVenkatDhulipudi 2 Nov 17, 2021
Pipeline for training LSA models using Scikit-Learn.

Latent Semantic Analysis Pipeline for training LSA models using Scikit-Learn. Usage Instead of writing custom code for latent semantic analysis, you j

Dani El-Ayyass 23 Sep 05, 2022
Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP

Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP This repository maintains some utility scripts for retrieving and preprocessing Wikipedia text

Masatoshi Suzuki 44 Oct 19, 2022