Curvlearn, a Tensorflow based non-Euclidean deep learning framework.

Overview

English | 简体中文

Why Non-Euclidean Geometry

Considering these simple graph structures shown below. Nodes with same color has 2-hop distance whereas 1-hop distance between nodes with different color. Now how could we embed these structures in Euclidean space while keeping these distance unchanged?

Actually perfect embedding without distortion, appearing naturally in hyperbolic (negative curvature) or spherical (positive curvature) space, is infeasible in Euclidean space [1].

As shown above, due to the high capacity of modeling complex structured data, e.g. scale-free, hierarchical or cyclic, there has been an growing interest in building deep learning models under non-Euclidean geometry, e.g. link prediction [2], recommendation [3].

What's CurvLearn

In this repository, we provide a framework, named CurvLearn, for training deep learning models in non-Euclidean spaces.

The framework implements the non-Euclidean operations in Tensorflow and remains the similar interface style for developing deep learning models.

Currently, CurvLearn serves for training several recommendation models in Alibaba. We implement CurvLearn on top of our distributed (graph/deep learning) training engines including Euler and x-deeplearning. The figure below shows how the category tree is embedded in hyperbolic space by using CurvLearn.

Why CurvLearn

CurvLearn has the following major features.

  1. Easy-to-Use. Converting a Tensorflow model from Euclidean space to non-Euclidean spaces with CurvLearn is graceful and undemanding, due to the manifold operations are decoupled from model architecture and similar to vanilla Tensorflow operations. For researchers, CurvLearn also reserves lucid interfaces for developing novel manifolds and optimizers.
  2. Comprehensive methods. CurvLearn is the first Tensorflow based non-Euclidean deep learning framework and supports several typical non-Euclidean spaces, e.g. constant curvature and mixed-curvature manifolds, together with necessary manifold operations and optimizers.
  3. Verified by tremendous industrial traffic. CurvLearn is serving on Alibaba's sponsored search platform with billions of online traffic in several key scenarios e.g. matching and cate prediction. Compared to Euclidean models, CurvLearn can bring more revenue and the RPM (revenue per mille) increases more than 1%.

Now we are working on exploring more non-Euclidean methods and integrating operations with Tensorflow. PR is welcomed!

CurvLearn Architecture

Manifolds

We implemented several types of constant curvature manifolds and the mixed-curvature manifold.

  • curvlearn.manifolds.Euclidean - Euclidean space with zero curvature.
  • curvlearn.manifolds.Stereographic - Constant curvature stereographic projection model. The curvature can be positive, negative or zero.
  • curvlearn.manifolds.PoincareBall - The stereographic projection of the Lorentz model with negative curvature.
  • curvlearn.manifolds.ProjectedSphere - The stereographic projection of the sphere model with positive curvature.
  • curvlearn.manifolds.Product - Mixed-curvature space consists of multiple manifolds with different curvatures.

Operations

To build a non-Euclidean deep neural network, we implemented several basic neural network operations. Complex operations can be decomposed into basic operations explicitly or realized in tangent space implicitly.

  • variable(t, c) - Defines a riemannian variable from manifold or tangent space at origin according to its name.
  • to_manifold(t, c, base) - Converts a tensor t in the tangent space of base point to the manifold.
  • to_tangent(t, c, base) - Converts a tensor t in the manifold to the tangent space of base point.
  • weight_sum(tensor_list, a, c) - Computes the sum of tensor list tensor_list with weight list a.
  • mean(t, c, axis) - Computes the average of elements along axis dimension of a tensor t.
  • sum(t, c, axis) - Computes the sum of elements along axis dimension of a tensor t.
  • concat(tensor_list, c, axis) - Concatenates tensor list tensor_list along axis dimension.
  • matmul(t, m, c) - Multiplies tensor t by euclidean matrix m.
  • add(x, y, c) - Adds tensor x and tensor y.
  • add_bias(t, b, c) - Adds a euclidean bias vector b to tensor t.
  • activation(t, c_in, c_out, act) - Computes the value of activation function act for the input tensor t.
  • linear(t, in_dim, out_dim, c_in, c_out, act, scope) - Computes the linear transformation for the input tensor t.
  • distance(src, tar, c) - Computes the squared geodesic/distance between src and tar.

Optimizers

We also implemented several typical riemannian optimizers. Please refer to [4] for more details.

  • curvlearn.optimizers.rsgd - Riemannian stochastic gradient optimizer.
  • curvlearn.optimizers.radagrad - Riemannian Adagrad optimizer.
  • curvlearn.optimizers.radam - Riemannian Adam optimizer.

How to use CurvLearn

To get started with CurvLearn quickly, we provide a simple binary classification model as a quick start and three representative examples for the application demo. Note that the non-Euclidean model is sensitive to the hyper-parameters such as learning rate, loss functions, optimizers, and initializers. It is necessary to tune those hyper-parameters when transferring to other datasets.

Installation

CurvLearn requires tensorflow~=1.15, compatible with both python 2/3.

The preferred way for installing is via pip.

pip install curvlearn

Quick Start

Here we show how to build binary classification model using CurvLearn. Model includes Stereographic manifold, linear operations , radam optimizer, etc.

Instructions and implement details are shown in Quick Start.

HGCN on Link Prediction [2]

HGCN (Hyperbolic Graph Convolutional Neural Network) is the first inductive hyperbolic GCN that leverages both the expressiveness of GCNs and hyperbolic geometry to learn inductive node representations for hierarchical and scale-free graphs. Run the command to check the accuracy on the OpenFlight airport dataset. Running environment and performance are listed in hgcn.

python examples/hgcn/train.py

HyperML on Recommendation Ranking [3]

HyperML (Hyperbolic Metric Learning) applies hyperbolic geometry to recommender systems through metric learning approach and achieves state-of-the-art performance on multiple benchmark datasets. Run the command to check the accuracy on the Amazon Kindle-Store dataset. Running environment and performance are listed in hyperml.

python examples/hyperml/train.py

Hyper Tree Pre-train Model

In the real-world, data is often organized in tree-like structure or can be represented hierarchically. It has been proven that hyperbolic deep neural networks have significant advantages over tree-data representation than Euclidean models. In this case, we present a hyperbolic graph pre-train model for category tree in Taobao. The further details including dataset description, model architecture and visualization of results can be found in CateTreePretrain.

python examples/tree_pretrain/run_model.py

References

[1] Bachmann, Gregor, Gary Bécigneul, and Octavian Ganea. "Constant curvature graph convolutional networks." International Conference on Machine Learning. PMLR, 2020.

[2] Chami, Ines, et al. "Hyperbolic graph convolutional neural networks." Advances in neural information processing systems 32 (2019): 4868-4879.

[3] Vinh Tran, Lucas, et al. "Hyperml: A boosting metric learning approach in hyperbolic space for recommender systems." Proceedings of the 13th International Conference on Web Search and Data Mining. 2020.

[4] Bécigneul, Gary, and Octavian-Eugen Ganea. "Riemannian adaptive optimization methods." arXiv preprint arXiv:1810.00760 (2018).

License

This project is licensed under the Apache License, Version 2.0, unless otherwise explicitly stated.

Owner
Alibaba
Alibaba Open Source
Alibaba
An all-in-one application to visualize multiple different local path planning algorithms

Table of Contents Table of Contents Local Planner Visualization Project (LPVP) Features Installation/Usage Local Planners Probabilistic Roadmap (PRM)

Abdur Javaid 47 Dec 30, 2022
Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

Erdene-Ochir Tuguldur 22 Nov 30, 2022
This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Miaoyun Zhao 43 Dec 27, 2022
A modification of Daniel Russell's notebook merged with Katherine Crowson's hq-skip-net changes

Edits made to this repo by Katherine Crowson I have added several features to this repository for use in creating higher quality generative art (featu

Paul Fishwick 10 May 07, 2022
Uni-Fold: Training your own deep protein-folding models.

Uni-Fold: Training your own deep protein-folding models. This package provides and implementation of a trainable, Transformer-based deep protein foldi

DeepModeling 88 Jan 03, 2023
CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation

CDGAN CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation CDGAN Implementation in PyTorch This is the imple

Kancharagunta Kishan Babu 6 Apr 19, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The

FengZhang 34 Dec 04, 2022
Python package for downloading ECMWF reanalysis data and converting it into a time series format.

ecmwf_models Readers and converters for data from the ECMWF reanalysis models. Written in Python. Works great in combination with pytesmo. Citation If

TU Wien - Department of Geodesy and Geoinformation 31 Dec 26, 2022
[ICCV21] Official implementation of the "Social NCE: Contrastive Learning of Socially-aware Motion Representations" in PyTorch.

Social-NCE + CrowdNav Website | Paper | Video | Social NCE + Trajectron | Social NCE + STGCNN This is an official implementation for Social NCE: Contr

VITA lab at EPFL 125 Dec 23, 2022
Continual reinforcement learning baselines: experiment specifications, implementation of existing methods, and common metrics. Easily extensible to new methods.

Continual Reinforcement Learning This repository provides a simple way to run continual reinforcement learning experiments in PyTorch, including evalu

55 Dec 24, 2022
learned_optimization: Training and evaluating learned optimizers in JAX

learned_optimization: Training and evaluating learned optimizers in JAX learned_optimization is a research codebase for training learned optimizers. I

Google 533 Dec 30, 2022
Deep Distributed Control of Port-Hamiltonian Systems

De(e)pendable Distributed Control of Port-Hamiltonian Systems (DeepDisCoPH) This repository is associated to the paper [1] and it contains: The full p

Dependable Control and Decision group - EPFL 3 Aug 17, 2022
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

Amirsina Torfi 114 Dec 18, 2022
Deep Learning Pipelines for Apache Spark

Deep Learning Pipelines for Apache Spark The repo only contains HorovodRunner code for local CI and API docs. To use HorovodRunner for distributed tra

Databricks 2k Jan 08, 2023
An image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testingAn image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testing

SVM Données Une base d’images contient 490 images pour l’apprentissage (400 voitures et 90 bateaux), et encore 21 images pour fait des tests. Prétrait

Achraf Rahouti 3 Nov 30, 2021
Python package for dynamic system estimation of time series

PyDSE Toolset for Dynamic System Estimation for time series inspired by DSE. It is in a beta state and only includes ARMA models right now. Documentat

Blue Yonder GmbH 40 Oct 07, 2022
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
Marine debris detection with commercial satellite imagery and deep learning.

Marine debris detection with commercial satellite imagery and deep learning. Floating marine debris is a global pollution problem which threatens mari

Inter Agency Implementation and Advanced Concepts 56 Dec 16, 2022
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the

morningstarwang 4 Dec 14, 2022
Code accompanying the paper "Knowledge Base Completion Meets Transfer Learning"

Knowledge Base Completion Meets Transfer Learning This code accompanies the paper Knowledge Base Completion Meets Transfer Learning published at EMNLP

14 Nov 27, 2022