Simple embedding based text classifier inspired by fastText, implemented in tensorflow

Overview

FastText in Tensorflow

This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of fastText.

Classification is done by embedding each word, taking the mean embedding over the full text and classifying that using a linear classifier. The embedding is trained with the classifier. You can also specify to use 2+ character ngrams. These ngrams get hashed then embedded in a similar manner to the orginal words. Note, ngrams make training much slower but only make marginal improvements in performance, at least in English.

I may implement skipgram and cbow training later. Or preloading embedding tables.

<< Still WIP >>

You can use Horovod to distribute training across multiple GPUs, on one or multiple servers. See usage section below.

FastText Language Identification

I have added utilities to train a classifier to detect languages, as described in Fast and Accurate Language Identification using FastText

See usage below. It basically works in the same way as default usage.

Implemented:

  • classification of text using word embeddings
  • char ngrams, hashed to n bins
  • training and prediction program
  • serve models on tensorflow serving
  • preprocess facebook format, or text input into tensorflow records

Not Implemented:

  • separate word vector training (though can export embeddings)
  • heirarchical softmax.
  • quantize models (supported by tensorflow, but I haven't tried it yet)

Usage

The following are examples of how to use the applications. Get full help with --help option on any of the programs.

To transform input data into tensorflow Example format:

process_input.py --facebook_input=queries.txt --output_dir=. --ngrams=2,3,4

Or, using a text file with one example per line with an extra file for labels:

process_input.py --text_input=queries.txt --labels=labels.txt --output_dir=.

To train a text classifier:

classifier.py \
  --train_records=queries.tfrecords \
  --eval_records=queries.tfrecords \
  --label_file=labels.txt \
  --vocab_file=vocab.txt \
  --model_dir=model \
  --export_dir=model

To predict classifications for text, use a saved_model from classifier. classifier.py --export_dir stores a saved model in a numbered directory below export_dir. Pass this directory to the following to use that model for predictions:

predictor.py
  --saved_model=model/12345678
  --text="some text to classify"
  --signature_def=proba

To export the embedding layer you can export from predictor. Note, this will only be the text embedding, not the ngram embeddings.

predictor.py
  --saved_model=model/12345678
  --text="some text to classify"
  --signature_def=embedding

Use the provided script to train easily:

train_classifier.sh path-to-data-directory

Language Identification

To implement something similar to the method described in Fast and Accurate Language Identification using FastText you need to download the data:

lang_dataset.sh [datadir]

You can then process the training and validation data using process_input.py and classifier.py as described above.

There is a utility script to do this for you:

train_langdetect.sh datadir

It reaches about 96% accuracy using word embeddings and this increases to nearly 99% when adding --ngrams=2,3,4

Distributed Training

You can run training across multiple GPUs either on one or multiple servers. To do so you need to install MPI and Horovod then add the --horovod option. It runs very close to the GPU multiple in terms of performance. I.e. if you have 2 GPUs on your server, it should run close to 2x the speed.

NUM_GPUS=2
mpirun -np $NUM_GPUS python classifier.py \
  --horovod \
  --train_records=queries.tfrecords \
  --eval_records=queries.tfrecords \
  --label_file=labels.txt \
  --vocab_file=vocab.txt \
  --model_dir=model \
  --export_dir=model

The training script has this option added: train_classifier.sh.

Tensorflow Serving

As well as using predictor.py to run a saved model to provide predictions, it is easy to serve a saved model using Tensorflow Serving with a client server setup. There is a supplied simple rpc client (predictor_client.py) that provides predictions by using tensorflow server.

First make sure you install the tensorflow serving binaries. Instructions are here.

You then serve the latest saved model by supplying the base export directory where you exported saved models to. This directory will contain the numbered model directories:

tensorflow_model_server --port=9000 --model_base_path=model

Now you can make requests to the server using gRPC calls. An example simple client is provided in predictor_client.py:

predictor_client.py --text="Some text to classify"

Facebook Examples

<< NOT IMPLEMENTED YET >>

You can compare with Facebook's fastText by running similar examples to what's provided in their repository.

./classification_example.sh
./classification_results.sh
Owner
Alan Patterson
Alan Patterson
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

QData 440 Jan 02, 2023
For IBM Quantum Challenge Africa 2021, 9 September (07:00 UTC) - 20 September (23:00 UTC).

IBM Quantum Challenge Africa 2021 To ensure Africa is able to apply quantum computing to solve problems relevant to the continent, the IBM Research La

Qiskit Community 48 Dec 25, 2022
Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples"

KSTER Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples" [paper]. Usage Download the processed datas

jiangqn 23 Nov 24, 2022
Pytorch Implementations of large number classical backbone CNNs, data enhancement, torch loss, attention, visualization and some common algorithms.

Torch-template-for-deep-learning Pytorch implementations of some **classical backbone CNNs, data enhancement, torch loss, attention, visualization and

Li Shengyan 270 Dec 31, 2022
PyTorch Connectomics: segmentation toolbox for EM connectomics

Introduction The field of connectomics aims to reconstruct the wiring diagram of the brain by mapping the neural connections at the level of individua

Zudi Lin 132 Dec 26, 2022
Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training".

Mixup-Data-Dependency Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training". Running Alternating Line Exp

Muthu Chidambaram 0 Nov 11, 2021
Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample

DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral) Project | Paper Official PyTorch implementation of the pape

Eliahu Horwitz 393 Dec 22, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

631 Jan 04, 2023
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022
Working demo of the Multi-class and Anomaly classification model using the CLIP feature space

👁️ Hindsight AI: Crime Classification With Clip About For Educational Purposes Only This is a recursive neural net trained to classify specific crime

Miles Tweed 2 Jun 05, 2022
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.

NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture

Microsoft 12.4k Dec 31, 2022
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.

HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex

Waleed 1.7k Dec 31, 2022
A simple baseline for 3d human pose estimation in tensorflow. Presented at ICCV 17.

3d-pose-baseline This is the code for the paper Julieta Martinez, Rayat Hossain, Javier Romero, James J. Little. A simple yet effective baseline for 3

Julieta Martinez 1.3k Jan 03, 2023
A copy of Ares that costs 30 fucking dollars.

Finalement, j'ai décidé d'abandonner cette idée, je me suis comporté comme un enfant qui été en colère. Comme m'ont dit certaines personnes j'ai des c

Bleu 24 Apr 14, 2022
Fast methods to work with hydro- and topography data in pure Python.

PyFlwDir Intro PyFlwDir contains a series of methods to work with gridded DEM and flow direction datasets, which are key to many workflows in many ear

Deltares 27 Dec 07, 2022
A Pythonic library for Nvidia Codec.

A Pythonic library for Nvidia Codec. The project is still in active development; expect breaking changes. Why another Python library for Nvidia Codec?

Zesen Qian 12 Dec 27, 2022
This code is an implementation for Singing TTS.

MLP Singer This code is an implementation for Singing TTS. The algorithm is based on the following papers: Tae, J., Kim, H., & Lee, Y. (2021). MLP Sin

Heejo You 22 Dec 23, 2022
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrast

Iñigo Alonso Ruiz 58 Dec 15, 2022
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022