Code for ACL 2019 Paper: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"

Overview

To run a generation experiment (either conceptnet or atomic), follow these instructions:

First Steps

First clone, the repo:

git clone https://github.com/atcbosselut/comet-commonsense.git

Then run the setup scripts to acquire the pretrained model files from OpenAI, as well as the ATOMIC and ConceptNet datasets

bash scripts/setup/get_atomic_data.sh
bash scripts/setup/get_conceptnet_data.sh
bash scripts/setup/get_model_files.sh

Then install dependencies (assuming you already have Python 3.6 and Pytorch >= 1.0:

conda install tensorflow
pip install ftfy==5.1
conda install -c conda-forge spacy
python -m spacy download en
pip install tensorboardX
pip install tqdm
pip install pandas
pip install ipython

Making the Data Loaders

Run the following scripts to pre-initialize a data loader for ATOMIC or ConceptNet:

python scripts/data/make_atomic_data_loader.py
python scripts/data/make_conceptnet_data_loader.py

For the ATOMIC KG, if you'd like to make a data loader for only a subset of the relation types, comment out any relations in lines 17-25.

For ConceptNet if you'd like to map the relations to natural language analogues, set opt.data.rel = "language" in line 26. If you want to initialize unpretrained relation tokens, set opt.data.rel = "relation"

Setting the ATOMIC configuration files

Open config/atomic/changes.json and set which categories you want to train, as well as any other details you find important. Check src/data/config.py for a description of different options. Variables you may want to change: batch_size, learning_rate, categories. See config/default.json and config/atomic/default.json for default settings of some of these variables.

Setting the ConceptNet configuration files

Open config/conceptnet/changes.json and set any changes to the degault configuration that you may want to vary in this experiment. Check src/data/config.py for a description of different options. Variables you may want to change: batch_size, learning_rate, etc. See config/default.json and config/conceptnet/default.json for default settings of some of these variables.

Running the ATOMIC experiment

Training

For whichever experiment # you set in ```config/atomic/changes.json``` (e.g., 0, 1, 2, etc.), run:
python src/main.py --experiment_type atomic --experiment_num #

Evaluation

Once you've trained a model, run the evaluation script:

python scripts/evaluate/evaluate_atomic_generation_model.py --split $DATASET_SPLIT --model_name /path/to/model/file

Generation

Once you've trained a model, run the generation script for the type of decoding you'd like to do:

python scripts/generate/generate_atomic_beam_search.py --beam 10 --split $DATASET_SPLIT --model_name /path/to/model/file
python scripts/generate/generate_atomic_greedy.py --split $DATASET_SPLIT --model_name /path/to/model/file
python scripts/generate/generate_atomic_topk.py --k 10 --split $DATASET_SPLIT --model_name /path/to/model/file

Running the ConceptNet experiment

Training

For whichever experiment # you set in config/conceptnet/changes.json (e.g., 0, 1, 2, etc.), run:

python src/main.py --experiment_type conceptnet --experiment_num #

Development and Test set tuples are automatically evaluated and generated with greedy decoding during training

Generation

If you want to generate with a larger beam size, run the generation script

python scripts/generate/generate_conceptnet_beam_search.py --beam 10 --split $DATASET_SPLIT --model_name /path/to/model/file

Classifying Generated Tuples

To run the classifier from Li et al., 2016 on your generated tuples to evaluate correctness, first download the pretrained model from:

wget https://ttic.uchicago.edu/~kgimpel/comsense_resources/ckbc-demo.tar.gz
tar -xvzf ckbc-demo.tar.gz

then run the following script on the the generations file, which should be in .pickle format:

bash scripts/classify/classify.sh /path/to/generations_file/without/pickle/extension

If you use this classification script, you'll also need Python 2.7 installed.

Playing Around in Interactive Mode

First, download the pretrained models from the following link:

https://drive.google.com/open?id=1FccEsYPUHnjzmX-Y5vjCBeyRt1pLo8FB

Then untar the file:

tar -xvzf pretrained_models.tar.gz

Then run the following script to interactively generate arbitrary ATOMIC event effects:

python scripts/interactive/atomic_single_example.py --model_file pretrained_models/atomic_pretrained_model.pickle

Or run the following script to interactively generate arbitrary ConceptNet tuples:

python scripts/interactive/conceptnet_single_example.py --model_file pretrained_models/conceptnet_pretrained_model.pickle

Bug Fixes

Beam Search

In BeamSampler in sampler.py, there was a bug that made the scoring function for each beam candidate slightly different from normalized loglikelihood. Only sequences decoded with beam search are affected by this. It's been fixed in the repository, and seems to have little discernible impact on the quality of the generated sequences. If you'd like to replicate the exact paper results, however, you'll need to use the buggy beam search from before, by setting paper_results = True in Line 251 of sampler.py

References

Please cite this repository using the following reference:

@inproceedings{Bosselut2019COMETCT,
  title={COMET: Commonsense Transformers for Automatic Knowledge Graph Construction},
  author={Antoine Bosselut and Hannah Rashkin and Maarten Sap and Chaitanya Malaviya and Asli Çelikyilmaz and Yejin Choi},
  booktitle={Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL)},
  year={2019}
}
Owner
Antoine Bosselut
I am an assistant professor at EPFL working on learning algorithms for NLP and knowledge graphs. Previously @snap-stanford @stanfordnlp @allenai @uwnlp
Antoine Bosselut
PyTorch implementation for "HyperSPNs: Compact and Expressive Probabilistic Circuits", NeurIPS 2021

HyperSPN This repository contains code for the paper: HyperSPNs: Compact and Expressive Probabilistic Circuits "HyperSPNs: Compact and Expressive Prob

8 Nov 08, 2022
Vit-ImageClassification - Pytorch ViT for Image classification on the CIFAR10 dataset

Vit-ImageClassification Introduction This project uses ViT to perform image clas

Kaicheng Yang 4 Jun 01, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation This repository contains the official PyTorch implementation of the following

Wonjong Jang 270 Dec 30, 2022
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
Synthesizing Long-Term 3D Human Motion and Interaction in 3D in CVPR2021

Long-term-Motion-in-3D-Scenes This is an implementation of the CVPR'21 paper "Synthesizing Long-Term 3D Human Motion and Interaction in 3D". Please ch

Jiashun Wang 76 Dec 13, 2022
SelfAugment extends MoCo to include automatic unsupervised augmentation selection.

SelfAugment extends MoCo to include automatic unsupervised augmentation selection. In addition, we've included the ability to pretrain on several new datasets and included a wandb integration.

Colorado Reed 24 Oct 26, 2022
Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

AutoAugment - Learning Augmentation Policies from Data Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by Au

Philip Popien 1.3k Jan 02, 2023
SAMO: Streaming Architecture Mapping Optimisation

SAMO: Streaming Architecture Mapping Optimiser The SAMO framework provides a method of optimising the mapping of a Convolutional Neural Network model

Alexander Montgomerie-Corcoran 20 Dec 10, 2022
Semi-supervised Transfer Learning for Image Rain Removal. In CVPR 2019.

Semi-supervised Transfer Learning for Image Rain Removal This package contains the Python implementation of "Semi-supervised Transfer Learning for Ima

Wei Wei 59 Dec 26, 2022
OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion.

OstrichRL This is the repository accompanying the paper OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion. It contain

Vittorio La Barbera 51 Nov 17, 2022
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)

MTTS-CAN: Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement Paper Xin Liu, Josh Fromm, Shwetak Patel, Daniel M

Xin Liu 106 Dec 30, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
MT3: Multi-Task Multitrack Music Transcription

MT3: Multi-Task Multitrack Music Transcription MT3 is a multi-instrument automatic music transcription model that uses the T5X framework. This is not

Magenta 867 Dec 29, 2022
Implementation for the paper 'YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs'

YOLO-ReT This is the original implementation of the paper: YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs. Prakhar Ganesh, Ya

69 Oct 19, 2022
PyTorch implementation of spectral graph ConvNets, NIPS’16

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Rithesh Kumar 135 Oct 27, 2022
A semantic segmentation toolbox based on PyTorch

Introduction vedaseg is an open source semantic segmentation toolbox based on PyTorch. Features Modular Design We decompose the semantic segmentation

407 Dec 15, 2022
🏖 Keras Implementation of Painting outside the box

Keras implementation of Image OutPainting This is an implementation of Painting Outside the Box: Image Outpainting paper from Standford University. So

Bendang 1.1k Dec 10, 2022
A simple python module to generate anchor (aka default/prior) boxes for object detection tasks.

PyBx WIP A simple python module to generate anchor (aka default/prior) boxes for object detection tasks. Calculated anchor boxes are returned as ndarr

thatgeeman 4 Dec 15, 2022