PyImpetus is a Markov Blanket based feature subset selection algorithm that considers features both separately and together as a group in order to provide not just the best set of features but also the best combination of features

Overview

forthebadge made-with-python ForTheBadge built-with-love

PyPI version shields.io Downloads Maintenance

PyImpetus

PyImpetus is a Markov Blanket based feature selection algorithm that selects a subset of features by considering their performance both individually as well as a group. This allows the algorithm to not only select the best set of features, but also select the best set of features that play well with each other. For example, the best performing feature might not play well with others while the remaining features, when taken together could out-perform the best feature. PyImpetus takes this into account and produces the best possible combination. Thus, the algorithm provides a minimal feature subset. So, you do not have to decide on how many features to take. PyImpetus selects the optimal set for you.

PyImpetus has been completely revamped and now supports binary classification, multi-class classification and regression tasks. It has been tested on 14 datasets and outperformed state-of-the-art Markov Blanket learning algorithms on all of them along with traditional feature selection algorithms such as Forward Feature Selection, Backward Feature Elimination and Recursive Feature Elimination.

How to install?

pip install PyImpetus

Functions and parameters

# The initialization of PyImpetus takes in multiple parameters as input
# PPIMBC is for classification
model = PPIMBC(model, p_val_thresh, num_simul, simul_size, simul_type, sig_test_type, cv, verbose, random_state, n_jobs)
  • model - estimator object, default=DecisionTreeClassifier() The model which is used to perform classification in order to find feature importance via significance-test.
  • p_val_thresh - float, default=0.05 The p-value (in this case, feature importance) below which a feature will be considered as a candidate for the final MB.
  • num_simul - int, default=30 (This feature has huge impact on speed) Number of train-test splits to perform to check usefulness of each feature. For large datasets, the value should be considerably reduced though do not go below 5.
  • simul_size - float, default=0.2 The size of the test set in each train-test split
  • simul_type - boolean, default=0 To apply stratification or not
    • 0 means train-test splits are not stratified.
    • 1 means the train-test splits will be stratified.
  • sig_test_type - string, default="non-parametric" This determines the type of significance test to use.
    • "parametric" means a parametric significance test will be used (Note: This test selects very few features)
    • "non-parametric" means a non-parametric significance test will be used
  • cv - cv object/int, default=0 Determines the number of splits for cross-validation. Sklearn CV object can also be passed. A value of 0 means CV is disabled.
  • verbose - int, default=2 Controls the verbosity: the higher, more the messages.
  • random_state - int or RandomState instance, default=None Pass an int for reproducible output across multiple function calls.
  • n_jobs - int, default=-1 The number of CPUs to use to do the computation.
    • None means 1 unless in a :obj:joblib.parallel_backend context.
    • -1 means using all processors.
# The initialization of PyImpetus takes in multiple parameters as input
# PPIMBR is for regression
model = PPIMBR(model, p_val_thresh, num_simul, simul_size, sig_test_type, cv, verbose, random_state, n_jobs)
  • model - estimator object, default=DecisionTreeRegressor() The model which is used to perform regression in order to find feature importance via significance-test.
  • p_val_thresh - float, default=0.05 The p-value (in this case, feature importance) below which a feature will be considered as a candidate for the final MB.
  • num_simul - int, default=30 (This feature has huge impact on speed) Number of train-test splits to perform to check usefulness of each feature. For large datasets, the value should be considerably reduced though do not go below 5.
  • simul_size - float, default=0.2 The size of the test set in each train-test split
  • sig_test_type - string, default="non-parametric" This determines the type of significance test to use.
    • "parametric" means a parametric significance test will be used (Note: This test selects very few features)
    • "non-parametric" means a non-parametric significance test will be used
  • cv - cv object/int, default=0 Determines the number of splits for cross-validation. Sklearn CV object can also be passed. A value of 0 means CV is disabled.
  • verbose - int, default=2 Controls the verbosity: the higher, more the messages.
  • random_state - int or RandomState instance, default=None Pass an int for reproducible output across multiple function calls.
  • n_jobs - int, default=-1 The number of CPUs to use to do the computation.
    • None means 1 unless in a :obj:joblib.parallel_backend context.
    • -1 means using all processors.
# To fit PyImpetus on provided dataset and find recommended features
fit(data, target)
  • data - A pandas dataframe upon which feature selection is to be applied
  • target - A numpy array, denoting the target variable
# This function returns the names of the columns that form the MB (These are the recommended features)
transform(data)
  • data - A pandas dataframe which needs to be pruned
# To fit PyImpetus on provided dataset and return pruned data
fit_transform(data, target)
  • data - A pandas dataframe upon which feature selection is to be applied
  • target - A numpy array, denoting the target variable
# To plot XGBoost style feature importance
feature_importance()

How to import?

from PyImpetus import PPIMBC, PPIMBR

Usage

# Import the algorithm. PPIMBC is for classification and PPIMBR is for regression
from PyImeptus import PPIMBC, PPIMBR
# Initialize the PyImpetus object
model = PPIMBC(model=SVC(random_state=27, class_weight="balanced"), p_val_thresh=0.05, num_simul=30, simul_size=0.2, simul_type=0, sig_test_type="non-parametric", cv=5, random_state=27, n_jobs=-1, verbose=2)
# The fit_transform function is a wrapper for the fit and transform functions, individually.
# The fit function finds the MB for given data while transform function provides the pruned form of the dataset
df_train = model.fit_transform(df_train.drop("Response", axis=1), df_train["Response"].values)
df_test = model.transform(df_test)
# Check out the MB
print(model.MB)
# Check out the feature importance scores for the selected feature subset
print(model.feat_imp_scores)
# Get a plot of the feature importance scores
model.feature_importance()

For better accuracy

Note: Play with the values of num_simul, simul_size, simul_type and p_val_thresh because sometimes a specific combination of these values will end up giving best results

  • Increase the cv value In all experiments, cv did not help in getting better accuracy. Use this only when you have extremely small dataset
  • Increase the num_simul value
  • Try one of these values for simul_size = {0.1, 0.2, 0.3, 0.4}
  • Use non-linear models for feature selection. Apply hyper-parameter tuning on models
  • Increase value of p_val_thresh in order to increase the number of features to include in thre Markov Blanket

For better speeds

  • Decrease the cv value. For large datasets cv might not be required. Therefore, set cv=0 to disable the aggregation step. This will result in less robust feature subset selection but at much faster speeds
  • Decrease the num_simul value but don't decrease it below 5
  • Set n_jobs to -1
  • Use linear models

For selection of less features

  • Try reducing the p_val_thresh value
  • Try out sig_test_type = "parametric"

Performance in terms of Accuracy (classification) and MSE (regression)

Dataset # of samples # of features Task Type Score using all features Score using featurewiz Score using PyImpetus # of features selected % of features selected Tutorial
Ionosphere 351 34 Classification 88.01% 92.86% 14 42.42% tutorial here
Arcene 100 10000 Classification 82% 84.72% 304 3.04%
AlonDS2000 62 2000 Classification 80.55% 86.98% 88.49% 75 3.75%
slice_localization_data 53500 384 Regression 6.54 5.69 259 67.45% tutorial here

Note: Here, for the first, second and third tasks, a higher accuracy score is better while for the fourth task, a lower MSE (Mean Squared Error) is better.

Performance in terms of Time (in seconds)

Dataset # of samples # of features Time (with PyImpetus)
Ionosphere 351 34 35.37
Arcene 100 10000 1570
AlonDS2000 62 2000 125.511
slice_localization_data 53500 384 1296.13

Future Ideas

  • Let me know

Feature Request

Drop me an email at [email protected] if you want any particular feature

Please cite this work as

Reference to the upcoming paper will be added here

Owner
Atif Hassan
PhD student at the Center of Excellence for AI, IIT Kharagpur.
Atif Hassan
Semantic similarity computation with different state-of-the-art metrics

Semantic similarity computation with different state-of-the-art metrics Description • Installation • Usage • License Description TaxoSS is a semantic

6 Jun 22, 2022
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

Learning View Priors for Single-view 3D Reconstruction (CVPR 2019) This is code for a paper Learning View Priors for Single-view 3D Reconstruction by

Hiroharu Kato 38 Aug 17, 2022
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang

Chen XiaoKang 387 Jan 08, 2023
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Johannes von Lindheim 3 Oct 29, 2022
Matching python environment code for Lux AI 2021 Kaggle competition, and a gym interface for RL models.

Lux AI 2021 python game engine and gym This is a replica of the Lux AI 2021 game ported directly over to python. It also sets up a classic Reinforceme

Geoff McDonald 74 Nov 03, 2022
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
A new data augmentation method for extreme lighting conditions.

Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l

Osama Mazhar 35 Nov 26, 2022
Tensorflow port of a full NetVLAD network

netvlad_tf The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide

Robotics and Perception Group 225 Nov 08, 2022
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 01, 2023
PHOTONAI is a high level python API for designing and optimizing machine learning pipelines.

PHOTONAI is a high level python API for designing and optimizing machine learning pipelines. We've created a system in which you can easily select and

Medical Machine Learning Lab - University of Münster 57 Nov 12, 2022
This repository contains a pytorch implementation of "StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision".

StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision | Project Page | Paper | This repository contains a pytorch implementation of "St

87 Dec 09, 2022
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022
Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485

python-pylontech Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485 What is this lib ? This lib is meant to talk to P

Frank 26 Dec 28, 2022
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022
A PyTorch version of You Only Look at One-level Feature object detector

PyTorch_YOLOF A PyTorch version of You Only Look at One-level Feature object detector. The input image must be resized to have their shorter side bein

Jianhua Yang 25 Dec 30, 2022
Pytorch for Segmentation

Pytorch for Semantic Segmentation This repo has been deprecated currently and I will not maintain it. Meanwhile, I strongly recommend you can refer to

ycszen 411 Nov 22, 2022